Wolfram Alpha bestätigt das Ergebnis
This commit is contained in:
parent
e156619486
commit
b41f724da5
1 changed files with 1 additions and 1 deletions
|
@ -324,7 +324,7 @@ Sei $g(x) = c_0 + c_1x+ c_2x^2 + \ldots$.
|
||||||
Es ergibt sich für den quadratischen Term:
|
Es ergibt sich für den quadratischen Term:
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
(\sin \alpha t + \sin \beta t)^2 &=& (\sin \alpha t)^2 + 2 \sin \alpha t \sin \beta t + (\sin \beta t)^2\\
|
(\sin \alpha t + \sin \beta t)^2 &=& (\sin \alpha t)^2 + 2 \sin \alpha t \sin \beta t + (\sin \beta t)^2\\
|
||||||
&\overset{?}{=}& \frac{1}{2} - \frac{1}{2} \cos 2 \alpha t + \cos(\alpha t - \beta t) \cos (\alpha t + \beta t)
|
&=& \frac{1}{2} - \frac{1}{2} \cos 2 \alpha t + \cos(\alpha t - \beta t) \cos (\alpha t + \beta t)
|
||||||
+ \frac{1}{2} - \frac{1}{2} \cos 2 \beta t\\
|
+ \frac{1}{2} - \frac{1}{2} \cos 2 \beta t\\
|
||||||
\end{IEEEeqnarray*}
|
\end{IEEEeqnarray*}
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue