2022-02-16 02:31:15 +01:00
|
|
|
Let $\mathfrak{l}$ be any field.
|
|
|
|
\begin{definition}
|
2022-02-16 05:19:03 +01:00
|
|
|
For a $\mathfrak{l}$-vector space $V$, let $\mathbb{P}(V)$ be
|
|
|
|
the set of
|
|
|
|
one-dimensional subspaces of $V$.
|
|
|
|
Let $\mathbb{P}^n(\mathfrak{l}) \coloneqq
|
|
|
|
\mathbb{P}(\mathfrak{l}^{n+1})$, the
|
|
|
|
\vocab[Projective space]{$n$-dimensional projective space over $\mathfrak{l}$}.
|
|
|
|
|
|
|
|
If $\mathfrak{l}$ is kept fixed, we will often write
|
|
|
|
$\mathbb{P}^n$ for
|
|
|
|
$\mathbb{P}^n(\mathfrak{l})$.
|
|
|
|
|
|
|
|
When dealing with $\mathbb{P}^n$, the usual convention is to use
|
|
|
|
$0$ as the
|
|
|
|
index of the first coordinate.
|
|
|
|
|
|
|
|
We denote the one-dimensional subspace generated by $(x_0,\ldots,x_n) \in
|
|
|
|
\mathfrak{k}^{n+1} \setminus \{0\}$ by
|
|
|
|
$[x_0,\ldots,x_n] \in \mathbb{P}^n$.
|
|
|
|
If $x = [x_0,\ldots,x_n] \in \mathbb{P}^n$, the
|
|
|
|
$(x_{i})_{i=0}^n$ are
|
|
|
|
called
|
|
|
|
\vocab{homogeneous coordinates} of $x$.
|
2022-02-16 02:31:15 +01:00
|
|
|
At least one of the $x_{i}$ must be $\neq 0$.
|
|
|
|
\end{definition}
|
|
|
|
\begin{remark}
|
2022-02-16 05:19:03 +01:00
|
|
|
There are points $[1,0],
|
|
|
|
[0,1] \in \mathbb{P}^1$ but there
|
|
|
|
is no point $[0,0]
|
|
|
|
\in \mathbb{P}^1$.
|
2022-02-16 02:31:15 +01:00
|
|
|
\end{remark}
|
|
|
|
\begin{definition}[Infinite hyperplane]
|
2022-02-16 05:19:03 +01:00
|
|
|
For $0 \le i \le n$ let $U_i \subseteq
|
|
|
|
\mathbb{P}^n$ denote the set of $[x_0,\ldots,x_{n}]$ with
|
|
|
|
$x_{i}\neq 0$.
|
|
|
|
This is a correct definition since two different sets $[x_0,\ldots,x_{n}]$ and
|
|
|
|
$[\xi_0,\ldots,\xi_n]$ of homogeneous coordinates for the
|
|
|
|
same point $x \in
|
|
|
|
\mathbb{P}^n$ differ by scaling with a $\lambda \in
|
|
|
|
\mathfrak{l}^{\times}$,
|
|
|
|
$x_i = \lambda \xi_i$.
|
|
|
|
Since not all $x_i$ may be $0$, $\mathbb{P}^n =
|
|
|
|
\bigcup_{i=0}^n U_i$.
|
|
|
|
We identify $\mathbb{A}^n =
|
|
|
|
\mathbb{A}^n(\mathfrak{l}) = \mathfrak{l}^n$
|
|
|
|
with
|
|
|
|
$U_0$ by identifying $(x_1,\ldots,x_n) \in \mathbb{A}^n$ with
|
|
|
|
$[1,x_1,\ldots,x_n] \in \mathbb{P}^n$.
|
|
|
|
Then $\mathbb{P}^1 = \mathbb{A}^1 \cup \{\infty\} $
|
|
|
|
where $\infty=[0,1]$.
|
|
|
|
More generally, when $n > 0$ $\mathbb{P}^n \setminus
|
|
|
|
\mathbb{A}^n$ can be
|
|
|
|
identified with $\mathbb{P}^{n-1}$ identifying
|
|
|
|
$[0,x_1,\ldots,x_n] \in
|
|
|
|
\mathbb{P}^n \setminus \mathbb{A}^n$ with
|
|
|
|
$[x_1,\ldots,x_n] \in
|
|
|
|
\mathbb{P}^{n-1}$.
|
|
|
|
|
|
|
|
Thus $\mathbb{P}^n$ is $\mathbb{A}^n \cong
|
|
|
|
\mathfrak{l}^n$ with a copy of
|
|
|
|
$\mathbb{P}^{n-1}$ added as an \vocab{infinite hyperplane} .
|
2022-02-16 02:31:15 +01:00
|
|
|
\end{definition}
|
|
|
|
|
|
|
|
\subsubsection{Graded rings and homogeneous ideals}
|
|
|
|
\begin{notation}
|
|
|
|
Let $\mathbb{I} = \N$ or $\mathbb{I} = \Z$.
|
|
|
|
\end{notation}
|
|
|
|
\begin{definition}
|
2022-02-16 05:19:03 +01:00
|
|
|
By an \vocab[Graded ring]{$\mathbb{I}$-graded ring} $A_\bullet$ we understand a
|
|
|
|
ring $A$ with a collection $(A_d)_{d \in \mathbb{I}}$ of
|
|
|
|
subgroups of the
|
|
|
|
additive group $(A, +)$ such that $A_a \cdot A_b \subseteq
|
|
|
|
A_{a + b}$ for $a,b
|
|
|
|
\in \mathbb{I}$ and such that $A = \bigoplus_{d \in \mathbb{I}} A_d$ in
|
|
|
|
the
|
|
|
|
sense that every $r \in A$ has a unique decomposition $r =
|
|
|
|
\sum_{d \in
|
|
|
|
\mathbb{I}} r_d$ with $r_d \in A_d$ and but finitely many $r_d
|
|
|
|
\neq 0$.
|
2022-02-16 02:31:15 +01:00
|
|
|
|
|
|
|
We call the $r_d$ the \vocab{homogeneous components} of $r$.
|
|
|
|
|
2022-02-16 05:19:03 +01:00
|
|
|
An ideal $I \subseteq A$ is called \vocab{homogeneous} if $r \in I
|
|
|
|
\implies
|
|
|
|
\forall d \in \mathbb{I} ~ r_d \in I_d$ where $I_d \coloneqq I
|
|
|
|
\cap A_d$.
|
2022-02-16 02:31:15 +01:00
|
|
|
|
2022-02-16 05:19:03 +01:00
|
|
|
By a \vocab{graded ring} we understand an $\N$-graded ring.
|
|
|
|
Tin this case, $A_{+} \coloneqq \bigoplus_{d=1}^{\infty}
|
|
|
|
A_d = \{r \in A | r_0
|
|
|
|
= 0\} $ is called the \vocab{augmentation ideal} of $A$.
|
2022-02-16 02:31:15 +01:00
|
|
|
\end{definition}
|
|
|
|
\begin{remark}[Decomposition of $1$]
|
2022-02-16 05:19:03 +01:00
|
|
|
If $1 = \sum_{d \in \mathbb{I}} \varepsilon_d$ is the
|
|
|
|
decomposition into homogeneous components, then $\varepsilon_a = 1 \cdot
|
|
|
|
\varepsilon_a = \sum_{b \in \mathbb{I}} \varepsilon_a\varepsilon_b$ with
|
|
|
|
$\varepsilon_a\varepsilon_b \in A_{a+b}$.
|
|
|
|
By the uniqueness of the decomposition into homogeneous components,
|
|
|
|
$\varepsilon_a \varepsilon_0 = \varepsilon_a$ and $b \neq 0 \implies
|
|
|
|
\varepsilon_a \varepsilon_b = 0$.
|
|
|
|
Applying the last equation with $a = 0$ gives $b\neq 0 \implies \varepsilon_b =
|
|
|
|
\varepsilon_0 \varepsilon _b = 0$.
|
2022-02-16 02:31:15 +01:00
|
|
|
Thus $1 = \varepsilon_0 \in A_0$.
|
|
|
|
\end{remark}
|
|
|
|
\begin{remark}
|
|
|
|
The augmentation ideal of a graded ring is a homogeneous ideal.
|
|
|
|
\end{remark}
|
|
|
|
|
|
|
|
% Graded rings and homogeneous ideals (2)
|
|
|
|
|
2022-02-16 05:19:03 +01:00
|
|
|
\begin{proposition}
|
|
|
|
\footnote{This holds for both $\Z$-graded and $\N$-graded rings.}
|
2022-02-16 02:31:15 +01:00
|
|
|
\begin{itemize}
|
2022-02-16 05:19:03 +01:00
|
|
|
\item
|
|
|
|
A principal ideal generated by a homogeneous element is homogeneous.
|
|
|
|
\item
|
|
|
|
The operations $\sum, \bigcap, \sqrt{}$ preserve homogeneity.
|
|
|
|
\item
|
|
|
|
An ideal is homogeneous iff it can be generated by a family of homogeneous
|
|
|
|
elements.
|
2022-02-16 02:31:15 +01:00
|
|
|
\end{itemize}
|
|
|
|
\end{proposition}
|
|
|
|
\begin{proof}
|
2022-02-16 05:19:03 +01:00
|
|
|
Most assertions are trivial.
|
|
|
|
We only show that $J$ homogeneous $\implies \sqrt{J} $
|
|
|
|
homogeneous.
|
|
|
|
Let $A$ be $\mathbb{I}$-graded, $f \in \sqrt{J} $ and
|
|
|
|
$f = \sum_{d \in
|
|
|
|
\mathbb{I}} f_d$ the decomposition.
|
|
|
|
To show that all $f_d \in \sqrt{J} $, we use induction on $N_f
|
|
|
|
\coloneqq \# \{d
|
|
|
|
\in \mathbb{I} | f_d \neq 0\}$.
|
|
|
|
$N_f = 0$ is trivial.
|
|
|
|
Suppose $N_f > 0$ and $e \in \mathbb{I}$ is maximal with $f_e \neq
|
|
|
|
0$.
|
|
|
|
For $l \in \N$, the $le$-th homogeneous component of $f^l$ is $f_e^l$.
|
|
|
|
Choosing $l$ large enough such that $f^l \in J$ and using the homogeneity of
|
|
|
|
$J$, we find $f_e \in \sqrt{J}$.
|
|
|
|
As $\sqrt{J} $ is an ideal, $\tilde f \coloneqq f - f_e \in
|
|
|
|
\sqrt{J} $.
|
|
|
|
As $N_{\tilde f} = N_f -1$, the induction assumption may be
|
|
|
|
applied to $\tilde
|
|
|
|
f$ and shows $f_d \in \sqrt{J} $ for $d \neq e$.
|
2022-02-16 02:31:15 +01:00
|
|
|
\end{proof}
|
|
|
|
\begin{fact}
|
2022-02-16 05:19:03 +01:00
|
|
|
A homogeneous ideal is finitely generated iff it can be generated by finitely
|
|
|
|
many of its homogeneous elements.
|
2022-02-16 02:31:15 +01:00
|
|
|
In particular, this is always the case when $A$ is a Noetherian ring.
|
|
|
|
\end{fact}
|
|
|
|
|
|
|
|
|
|
|
|
\subsubsection{The Zariski topology on $\mathbb{P}^n$}
|
|
|
|
\begin{notation}
|
2022-02-16 05:19:03 +01:00
|
|
|
Recall that for $\alpha \in \N^{n+1}$ $|\alpha| =
|
|
|
|
\sum_{i=0}^{n} \alpha_i$ and
|
|
|
|
$x^\alpha = x_0^{\alpha_0} \cdot \ldots \cdot x_n^{\alpha_n}$.
|
2022-02-16 02:31:15 +01:00
|
|
|
\end{notation}
|
|
|
|
\begin{definition}[Homogeneous polynomials]
|
2022-02-16 05:19:03 +01:00
|
|
|
Let $R$ be any ring and $f = \sum_{\alpha \in \N^{n+1}}
|
|
|
|
f_\alpha X^{\alpha}\in R[X_0,\ldots,X_n]$.
|
|
|
|
We say that $f$ is \vocab{homogeneous of degree $d$} if $|\alpha| \neq d
|
|
|
|
\implies f_\alpha = 0$ .
|
|
|
|
We denote the subset of homogeneous polynomials of degree $d$ by
|
|
|
|
$R[X_0,\ldots,X_n]_d \subseteq R[X_0,\ldots,X_n]$.
|
2022-02-16 02:31:15 +01:00
|
|
|
\end{definition}
|
|
|
|
\begin{remark}
|
|
|
|
This definition gives $R$ the structure of a graded ring.
|
|
|
|
\end{remark}
|
2022-02-16 05:19:03 +01:00
|
|
|
\begin{definition}[Zariski topology on $\mathbb{P}^n(\mathfrak{k})$]
|
|
|
|
\label{ztoppn}
|
|
|
|
Let $A = \mathfrak{k}[X_0,\ldots,X_n]$.
|
|
|
|
\footnote{As always, $\mathfrak{k}$ is algebraically closed}
|
|
|
|
For $f \in A_d = \mathfrak{k}[X_0,\ldots,X_n]_d$, the validity of the equation
|
|
|
|
$f(x_0,\ldots,x_{n}) = 0$ does not depend on the choice of homogeneous
|
|
|
|
coordinates, as
|
|
|
|
\[
|
|
|
|
f(\lambda x_0,\ldots, \lambda x_n) 0 \lambda^d
|
|
|
|
f(x_0,\ldots,x_n)
|
|
|
|
\]
|
|
|
|
Let $\Vp(f) \coloneqq \{x \in \mathbb{P}^n | f(x)
|
|
|
|
= 0\}$.
|
|
|
|
|
|
|
|
We call a subset $X \subseteq \mathbb{P}^n$ Zariski-closed if it
|
|
|
|
can be
|
|
|
|
represented as
|
2022-02-16 02:31:15 +01:00
|
|
|
\[
|
|
|
|
X = \bigcap_{i=1}^k \Vp(f_i)
|
2022-02-16 05:19:03 +01:00
|
|
|
\]
|
|
|
|
where the $f_i \in A_{d_i}$
|
|
|
|
are homogeneous polynomials.
|
2022-02-16 02:31:15 +01:00
|
|
|
\end{definition}
|
|
|
|
\pagebreak
|
|
|
|
\begin{fact}
|
2022-02-16 05:19:03 +01:00
|
|
|
If $X = \bigcap_{i = 1}^k \Vp(f_i) \subseteq
|
|
|
|
\mathbb{P}^n$ is closed, then $Y
|
|
|
|
= X \cap \mathbb{A}^n$ can be identified with the closed subset
|
2022-02-16 02:31:15 +01:00
|
|
|
\[
|
2022-02-16 05:19:03 +01:00
|
|
|
\{(x_1,\ldots,x_n) \in \mathfrak{k}^n | f_i(1,x_1,\ldots,x_n) = 0, 1
|
|
|
|
\le i \le
|
|
|
|
k\} \subseteq \mathfrak{k}^n
|
2022-02-16 02:31:15 +01:00
|
|
|
\]
|
2022-02-16 05:19:03 +01:00
|
|
|
Conversely, if $Y \subseteq \mathfrak{k}^n$ is
|
|
|
|
closed it has the form
|
2022-02-16 02:31:15 +01:00
|
|
|
\[
|
2022-02-16 05:19:03 +01:00
|
|
|
\{(x_1,\ldots,x_n) \in \mathfrak{k}^n |
|
|
|
|
g_i(x_1,\ldots,x_n) = 0, 1 \le i \le k\}
|
|
|
|
\]
|
|
|
|
and can thus be identified with $X
|
|
|
|
\cap \mathbb{A}^n$ where $X \coloneqq \bigcap_{i=1}^k
|
|
|
|
\Vp(f_i)$ is given by
|
|
|
|
\[
|
|
|
|
f_i(X_0,\ldots,X_n) \coloneqq X_0^{d_i} g_i(X_1 / X_0,\ldots, X_n / X_0), d_i
|
|
|
|
\ge \deg(g_i)
|
|
|
|
\]
|
|
|
|
Thus, the Zariski topology on $\mathfrak{k}^n$ can be
|
|
|
|
identified with the topology induced by the Zariski topology on
|
|
|
|
$\mathbb{A}^n =
|
|
|
|
U_0$, and the same holds for $U_i$ with $0 \le i \le n$.
|
|
|
|
|
|
|
|
In this sense, the Zariski topology on $\mathbb{P}^n$ can be
|
|
|
|
thought of as
|
|
|
|
gluing the Zariski topologies on the $U_i \cong \mathfrak{k}^n$.
|
2022-02-16 02:31:15 +01:00
|
|
|
\end{fact}
|
|
|
|
|
|
|
|
% The Zariski topology on P^n (2)
|
|
|
|
|
|
|
|
\begin{definition}
|
|
|
|
Let $I \subseteq A = \mathfrak{k}[X_0,\ldots,X_n]$ be a homogeneous ideal.
|
2022-02-16 05:19:03 +01:00
|
|
|
Let $\Vp(I) \coloneqq
|
|
|
|
\{[x_0,\ldots,_n] \in \mathbb{P}^n |
|
|
|
|
\forall f \in I ~
|
|
|
|
f(x_0,\ldots,x_n) = 0\}$ As $I$ is homogeneous, it is sufficient to impose this
|
|
|
|
condition for the homogeneous elements $f \in I$.
|
|
|
|
Because $A$ is Noetherian, $I$ can finitely generated by homogeneous elements
|
|
|
|
$(f_i)_{i=1}^k$ and
|
|
|
|
$\Vp(I)=\bigcap_{i=1}^k \Vp(f_i)$ as
|
|
|
|
in
|
|
|
|
\ref{ztoppn}.
|
|
|
|
Conversely, if the homogeneous $f_i$ are given, then $I = \langle
|
|
|
|
f_1,\ldots,f_k \rangle_A$ is homogeneous.
|
2022-02-16 02:31:15 +01:00
|
|
|
\end{definition}
|
|
|
|
\begin{remark}
|
|
|
|
Note that $V(A) = V(A_+) = \emptyset$.
|
|
|
|
\end{remark}
|
|
|
|
\begin{fact}
|
|
|
|
For homogeneous ideals in $A$ and $m \in \N$, we have:
|
2022-02-16 05:19:03 +01:00
|
|
|
\begin{itemize}
|
|
|
|
\item
|
|
|
|
$\Vp(\sum_{\lambda \in \Lambda} I_\lambda) = \bigcap_{\lambda \in \Lambda}
|
|
|
|
\Vp(I_\lambda)$
|
|
|
|
\item
|
|
|
|
$\Vp(\bigcap_{k=1}^m I_k) = \Vp(\prod_{k=1}^{m} I_k) =
|
|
|
|
\bigcup_{k=1}^m \Vp(I_k)$
|
|
|
|
\item
|
|
|
|
$\Vp(\sqrt{I}) = \Vp(I)$
|
2022-02-16 02:31:15 +01:00
|
|
|
\end{itemize}
|
|
|
|
\end{fact}
|
|
|
|
\begin{fact}
|
2022-02-16 05:19:03 +01:00
|
|
|
If $X = \bigcup_{\lambda \in \Lambda} U_\lambda$ is an
|
|
|
|
open covering of a topological space then $X$ is Noetherian iff there is a
|
|
|
|
finite subcovering and all $U_\lambda$ are Noetherian.
|
2022-02-16 02:31:15 +01:00
|
|
|
\end{fact}
|
|
|
|
\begin{proof}
|
2022-02-16 05:19:03 +01:00
|
|
|
By definition, a topological space is Noetherian $\iff$ all open subsets are
|
|
|
|
quasi-compact.
|
2022-02-16 02:31:15 +01:00
|
|
|
\end{proof}
|
|
|
|
\begin{corollary}
|
|
|
|
The Zariski topology on $\mathbb{P}^n$ is indeed a topology.
|
2022-02-16 05:19:03 +01:00
|
|
|
The induced topology on the open set $\mathbb{A}^n =
|
|
|
|
\mathbb{P}^n \setminus
|
|
|
|
\Vp(X_0) \cong \mathfrak{k}^n$ is the Zariski
|
|
|
|
topology on $\mathfrak{k}^n$.
|
|
|
|
The same holds for all $U_i = \mathbb{P}^n \setminus
|
|
|
|
\Vp(X_i) \cong
|
|
|
|
\mathfrak{k}^n$.
|
2022-02-16 02:31:15 +01:00
|
|
|
Moreover, the topological space $\mathbb{P}^n$ is Noetherian.
|
|
|
|
\end{corollary}
|
|
|
|
|
|
|
|
\subsection{Noetherianness of graded rings}
|
|
|
|
\begin{proposition}
|
2022-02-16 05:19:03 +01:00
|
|
|
For a graded ring $R_{\bullet}$, the following conditions
|
|
|
|
are equivalent:
|
2022-02-16 02:31:15 +01:00
|
|
|
\begin{enumerate}[A]
|
2022-02-16 05:19:03 +01:00
|
|
|
\item
|
|
|
|
$R$ is Noetherian.
|
|
|
|
\item
|
|
|
|
Every homogeneous ideal of $R_{\bullet}$ is finitely
|
|
|
|
generated.
|
|
|
|
\item
|
|
|
|
Every chain $I_0\subseteq I_1 \subseteq \ldots$ of homogeneous ideals
|
|
|
|
terminates.
|
|
|
|
\item
|
|
|
|
Every set $\mathfrak{M} \neq \emptyset$ of homogeneous ideals has a
|
|
|
|
$\subseteq$-maximal element.
|
|
|
|
\item
|
|
|
|
$R_0$ is Noetherian and the ideal $R_+$ is finitely generated.
|
|
|
|
\item
|
|
|
|
$R_0$ is Noetherian and $R / R_0$ is of finite type.
|
2022-02-16 02:31:15 +01:00
|
|
|
\end{enumerate}
|
|
|
|
\end{proposition}
|
|
|
|
\begin{proof}
|
|
|
|
\noindent\textbf{A $\implies$ B,C,D} trivial.
|
|
|
|
|
|
|
|
\noindent\textbf{B $\iff$ C $\iff$ D} similar to the proof about Noetherianness.
|
|
|
|
|
2022-02-16 05:19:03 +01:00
|
|
|
\noindent\textbf{B $\land$ C $\implies $E}
|
|
|
|
B implies that $R_+$ is finitely generated.
|
|
|
|
Since $I \oplus R_+$ is homogeneous for any homogeneous ideal $I \subseteq
|
|
|
|
R_0$, C implies the Noetherianness of $R_0$.
|
|
|
|
|
|
|
|
\noindent\textbf{E $\implies$ F}
|
|
|
|
Let $R_+$ be generated by $f_i \in R_{d_i}, d_i > 0$ as
|
|
|
|
an ideal.
|
|
|
|
\begin{claim}
|
|
|
|
The $R_0$-subalgebra $\tilde R$ of $R$ generated by the $f_i$ equals $R$.
|
|
|
|
\end{claim}
|
|
|
|
\begin{subproof}
|
|
|
|
It is sufficient to show that every homogeneous $f \in R_d$ belongs to $\tilde
|
|
|
|
R$.
|
|
|
|
We use induction on $d$.
|
|
|
|
The case of $d = 0$ is trivial.
|
|
|
|
Let $d > 0$ and $R_e \subseteq \tilde R$ for all $e < d$.
|
|
|
|
as $f \in R_+$, $f = \sum_{i=1}^{k} g_if_i$.
|
|
|
|
Let $f_a = \sum_{i=1}^{k} g_{i, a-d_i} f_i$, where
|
|
|
|
$g_i = \sum_{b=0}^{\infty}
|
|
|
|
g_{i,b}$ is the decomposition into homogeneous
|
|
|
|
components.
|
|
|
|
Then $f = \sum_{a=0}^{\infty} f_a$ is the decomposition of $f$ into
|
|
|
|
homogeneous
|
|
|
|
components, hence $a \neq d \implies f_a = 0 $.
|
|
|
|
Thus we may assume $g_i \in R_{d-d_i}$.
|
|
|
|
As $d_i > 0$, the induction assumption may now be applied to $g_i$, hence $g_i
|
|
|
|
\in \tilde R$, hence $f \in \tilde R$.
|
|
|
|
\end{subproof}
|
|
|
|
|
|
|
|
\noindent\textbf{F $\implies$ A}
|
|
|
|
Hilbert's Basissatz (
|
|
|
|
\ref{basissatz})
|
2022-02-16 02:31:15 +01:00
|
|
|
|
|
|
|
\end{proof}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2022-02-16 05:19:03 +01:00
|
|
|
\subsection{The projective form of the Nullstellensatz and the closed subsets
|
|
|
|
of $\mathbb{P}^n$} Let $A = \mathfrak{k}[X_0,\ldots,X_n]$.
|
|
|
|
% Lecture 12
|
|
|
|
\begin{proposition}[Projective form of the Nullstellensatz]
|
|
|
|
\label{hnsp}
|
|
|
|
If $I \subseteq A$ is a homogeneous ideal and $f \in A_d$ with $d>0$, then
|
|
|
|
$\Vp(I) \subseteq \Vp(f) \iff f \in
|
|
|
|
\sqrt{I}$.
|
2022-02-16 02:31:15 +01:00
|
|
|
\end{proposition}
|
|
|
|
\begin{proof}
|
2022-02-16 05:19:03 +01:00
|
|
|
$\impliedby$ is clear.
|
|
|
|
Let $\Vp(I) \subseteq \Vp(f)$.
|
|
|
|
If $x = (x_0,\ldots,x_n) \in \Va(I)$, then either $x = 0$ in
|
|
|
|
which case $f(x) =
|
|
|
|
0$ since $d > 0$ or the point $[x_0,\ldots,x_n] \in
|
|
|
|
\mathbb{P}^n$ is
|
|
|
|
well-defined and belongs to $\Vp(I) \subseteq
|
|
|
|
\Vp(f)$, hence $f(x) = 0$.
|
|
|
|
Thus $\Va(I) \subseteq \Va(f)$ and $f \in
|
|
|
|
\sqrt{I}$ be the Nullstellensatz
|
|
|
|
(
|
|
|
|
\ref{hns3}).
|
2022-02-16 02:31:15 +01:00
|
|
|
\end{proof}
|
|
|
|
|
2022-02-16 05:19:03 +01:00
|
|
|
\begin{definition}
|
|
|
|
\footnote{This definition is not too important, the characterization in the following remark suffices.}.
|
|
|
|
For a graded ring $R_\bullet$, let $\Proj(R_\bullet)$ be the set of
|
|
|
|
$\fp \in
|
|
|
|
\Spec R$ such that $\fp$ is a homogeneous ideal and $\fp \not\supseteq R_+$.
|
2022-02-16 02:31:15 +01:00
|
|
|
\end{definition}
|
2022-02-16 05:19:03 +01:00
|
|
|
\begin{remark}
|
|
|
|
\label{proja}
|
|
|
|
As the elements of $A_0 \setminus \{0\}$ are units in $A$ it follows that for
|
|
|
|
every homogeneous ideal $I$ we have $I \subseteq A_+$ or $I = A$.
|
|
|
|
In particular, $\Proj(A_\bullet) = \{\fp \in \Spec A \setminus A_+ |
|
|
|
|
\fp
|
|
|
|
\text{ is homogeneous}\} $.
|
2022-02-16 02:31:15 +01:00
|
|
|
\end{remark}
|
2022-02-16 05:19:03 +01:00
|
|
|
\begin{proposition}
|
|
|
|
\label{bijproj}
|
|
|
|
There is a bijection
|
2022-02-16 02:31:15 +01:00
|
|
|
\begin{align}
|
2022-02-16 05:19:03 +01:00
|
|
|
f: \{I \subseteq A_+ | I \text{ homogeneous
|
|
|
|
ideal}, I = \sqrt{I}\} & \longrightarrow \{X \subseteq \mathbb{P}^n | X \text{
|
|
|
|
closed}\} \\ I & \longmapsto \Vp(I)\\ \langle \{f \in A_d | d > 0, X
|
|
|
|
\subseteq \Vp(f)\} \rangle & \longmapsfrom X
|
2022-02-16 02:31:15 +01:00
|
|
|
\end{align}
|
2022-02-16 05:19:03 +01:00
|
|
|
Under this bijection,
|
|
|
|
the irreducible subsets correspond to the elements of
|
|
|
|
$\Proj(A_\bullet)$.
|
2022-02-16 02:31:15 +01:00
|
|
|
\end{proposition}
|
|
|
|
\begin{proof}
|
2022-02-16 05:19:03 +01:00
|
|
|
From the projective form of the Nullstellensatz it follows that $f$ is
|
|
|
|
injective and that $f^{-1}(\Vp\left( I \right))
|
|
|
|
= \sqrt{I} = I$.
|
|
|
|
If $X \subseteq \mathbb{P}^n$ is closed, then $X =
|
|
|
|
\Vp(J)$ for some homogeneous
|
|
|
|
ideal $J \subseteq A$.
|
|
|
|
Without loss of generality loss of generality $J = \sqrt{J}$.
|
|
|
|
If $J \not\subseteq A_+$, then $J = A$ (
|
|
|
|
\ref{proja}), hence $X =
|
|
|
|
\Vp(J) =
|
|
|
|
\emptyset = \Vp(A_+)$.
|
2022-02-16 02:31:15 +01:00
|
|
|
Thus we may assume $J \subseteq A_+$, and $f$ is surjective.
|
|
|
|
|
|
|
|
|
2022-02-16 05:19:03 +01:00
|
|
|
Suppose $\fp \in \Proj(A_\bullet)$.
|
|
|
|
Then $\fp \neq A_+$ hence $X = \Vp(\fp) \neq \emptyset$ by the
|
|
|
|
proven part of
|
|
|
|
the proposition.
|
|
|
|
Assume $X = X_1 \cup X_2$ is a decomposition into proper closed subsets, where
|
|
|
|
$X_k = \Vp(I_k)$ for some $I_k \subseteq A_+, I_k =
|
|
|
|
\sqrt{I_k}$.
|
|
|
|
Since $X_k$ is a proper subset of $X$, there is $f_k \in I_k \setminus \fp$.
|
|
|
|
We have $\Vp(f_1f_2) \supseteq \Vp(f_k) \supseteq
|
|
|
|
\Vp(I_k)$ hence $\Vp(f_1f_2)
|
|
|
|
\supseteq \Vp(I_1) \cup \Vp(I_2) = X =
|
|
|
|
\Vp(\fp)$ and it follows that $f_1f_2\in
|
|
|
|
\sqrt{\fp} = \fp \lightning$.
|
|
|
|
|
|
|
|
Assume $X = \Vp(\fp)$ is irreducible, where $\fp =
|
|
|
|
\sqrt{\fp} \in A_+$ is
|
|
|
|
homogeneous.
|
|
|
|
The $\fp \neq A_+$ as $X = \emptyset$ otherwise.
|
|
|
|
Assume that $f_1f_2 \in \fp$ but $f_i \not\in A_{d_i}
|
|
|
|
\setminus \fp$.
|
|
|
|
Then $X \not \subseteq \Vp(f_i)$ by the projective
|
|
|
|
Nullstellensatz when $d_i >
|
|
|
|
0$ and because $\Vp(1) = \emptyset$ when $d_i = 0$.
|
|
|
|
Thus $X = (X \cap \Vp\left( f_1 \right)) \cup (X \cap \Vp(f_2))$ is a
|
|
|
|
proper
|
|
|
|
decomposition $\lightning$.
|
|
|
|
By lemma
|
|
|
|
\ref{homprime}, $\fp$ is a prime ideal.
|
2022-02-16 02:31:15 +01:00
|
|
|
|
|
|
|
\end{proof}
|
|
|
|
\begin{remark}
|
2022-02-16 05:19:03 +01:00
|
|
|
It is important that $I \subseteq A_{\color{red} +}$, since
|
|
|
|
$\Vp(A) = \Vp(A_+)
|
|
|
|
= \emptyset$ would be a counterexample.
|
2022-02-16 02:31:15 +01:00
|
|
|
\end{remark}
|
|
|
|
\begin{corollary}
|
|
|
|
$\mathbb{P}^n$ is irreducible.
|
|
|
|
\end{corollary}
|
|
|
|
\begin{proof}
|
2022-02-16 05:19:03 +01:00
|
|
|
Apply
|
|
|
|
\ref{bijproj} to $\{0\} \in \Proj(A_\bullet)$.
|
2022-02-16 02:31:15 +01:00
|
|
|
\end{proof}
|
|
|
|
|
|
|
|
\subsection{Some remarks on homogeneous prime ideals}
|
2022-02-16 05:19:03 +01:00
|
|
|
\begin{lemma}
|
|
|
|
\label{homprime}
|
|
|
|
Let $R_\bullet$ be an $\mathbb{I}$ graded ring
|
|
|
|
($\mathbb{I} = \N$ or
|
|
|
|
$\mathbb{I} = \Z$).
|
|
|
|
A homogeneous ideal $I \subseteq R$ is a prime ideal iff $1 \not\in I$ and for
|
|
|
|
homogeneous elements $f, g \in R , fg \in I \implies f \in I \lor g \in I$.
|
2022-02-16 02:31:15 +01:00
|
|
|
\end{lemma}
|
|
|
|
\begin{proof}
|
|
|
|
$\implies$ is trivial.
|
2022-02-16 05:19:03 +01:00
|
|
|
It suffices to show that for arbitrary $f,g \in R fg \in I \implies f \in I
|
|
|
|
\lor g \in I$.
|
|
|
|
Let $f = \sum_{d \in \mathbb{I}} f_d, g = \sum_{d \in \mathbb{I}} g_d $ be the
|
|
|
|
decompositions into homogeneous components.
|
|
|
|
If $f \not\in I$ and $g \not\in I$ there are $d,e \in I$ with $f_d \in I, g_e
|
|
|
|
\in I$, and they may assumed to be maximal with this property.
|
|
|
|
As $I$ is homogeneous and $fg \in I$, we have
|
|
|
|
$(fg)_{d+e} \in I$ but
|
2022-02-16 02:31:15 +01:00
|
|
|
\[
|
2022-02-16 05:19:03 +01:00
|
|
|
(fg)_{d+e} = f_dg_e + \sum_{\delta = 1}^{\infty} (f_{d + \delta} g_{e - \delta}
|
|
|
|
+ f_{d - \delta} g_{e + \delta})
|
|
|
|
\]
|
|
|
|
where $f_dg_e \not\in I$ by our assumption
|
|
|
|
on $I$ and all other summands on the right hand side are $\in I$ (as
|
|
|
|
$f_{d+
|
|
|
|
\delta} \in I$ and $g_{e + \delta} \in
|
|
|
|
I$ by the maximality of $d$ and $e$), a
|
|
|
|
contradiction.
|
2022-02-16 02:31:15 +01:00
|
|
|
\end{proof}
|
|
|
|
|
|
|
|
\begin{remark}
|
2022-02-16 05:19:03 +01:00
|
|
|
If $R_\bullet$ is $\N$-graded and $\fp \in \Spec R_0$, then $\fp \oplus R_+ =
|
|
|
|
\{r \in R | r_0 \in \fp\} $ is a homogeneous prime ideal of $R$.
|
|
|
|
\[
|
|
|
|
\{\fp \in \Spec R | \fp \text{ is a homogeneous ideal of }
|
|
|
|
R_\bullet\} = \Proj(R_\bullet) \sqcup \{\fp \oplus R_+ | \fp \in \Spec
|
|
|
|
R_0\}
|
|
|
|
\]
|
2022-02-16 02:31:15 +01:00
|
|
|
\end{remark}
|
|
|
|
|
|
|
|
\subsection{Dimension of $\mathbb{P}^n$}
|
|
|
|
\begin{proposition}
|
|
|
|
\begin{itemize}
|
2022-02-16 05:19:03 +01:00
|
|
|
\item
|
|
|
|
$\mathbb{P}^n$ is catenary.
|
|
|
|
\item
|
|
|
|
$\dim(\mathbb{P}^n) = n$.
|
|
|
|
Moreover, $\codim(\{x\} ,\mathbb{P}^n) = n$ for every $x \in
|
|
|
|
\mathbb{P}^n$.
|
|
|
|
\item
|
|
|
|
If $X \subseteq \mathbb{P}^n$ is irreducible and $x \in X$, then
|
|
|
|
$\codim(\{x\}, X) = \dim(X) = n -
|
|
|
|
\codim(X, \mathbb{P}^n)$.
|
|
|
|
\item
|
|
|
|
If $X \subseteq Y \subseteq \mathbb{P}^n$ are irreducible subsets,
|
|
|
|
then $\codim(X,Y) = \dim(Y) -
|
|
|
|
\dim(X)$.
|
2022-02-16 02:31:15 +01:00
|
|
|
\end{itemize}
|
|
|
|
\end{proposition}
|
|
|
|
\begin{proof}
|
2022-02-16 05:19:03 +01:00
|
|
|
Let $X \subseteq \mathbb{P}^n$ be irreducible.
|
|
|
|
If $x \in X$, there is an integer $0 \le i \le n$ and $X \in U_i =
|
|
|
|
\mathbb{P}^n \setminus \Vp(X_i)$.
|
|
|
|
Without loss of generality loss of generality $i = 0$.
|
|
|
|
Then $\codim(X, \mathbb{P}^n) = \codim(X \cap \mathbb{A}^n, \mathbb{A}^n)$ by
|
|
|
|
the locality of Krull codimension (
|
|
|
|
\ref{lockrullcodim}).
|
|
|
|
Applying this with $X = \{x\}$ and our results about the affine case gives the
|
|
|
|
second assertion.
|
|
|
|
If $Y$ and $Z$ are also irreducible with $X \subseteq Y \subseteq Z$, then
|
|
|
|
$\codim(X,Y) = \codim(X \cap \mathbb{A}^n, Y \cap \mathbb{A}^n)$, $\codim(X,Z)
|
|
|
|
= \codim(X \cap \mathbb{A}^n, Z \cap \mathbb{A}^n)$ and $\codim(Y,Z) =
|
|
|
|
\codim(Y
|
|
|
|
\cap \mathbb{A}^n, Z \cap \mathbb{A}^n)$.
|
2022-02-16 02:31:15 +01:00
|
|
|
Thus
|
|
|
|
\begin{align}
|
2022-02-16 05:19:03 +01:00
|
|
|
\codim(X,Y) + \codim(Y,Z) & = \codim(X \cap \mathbb{A}^n, Y
|
|
|
|
\cap \mathbb{A}^n) + \codim(Y \cap \mathbb{A}^n, Z \cap \mathbb{A}^n) \\ & =
|
|
|
|
\codim(X \cap \mathbb{A}^n, Z \cap \mathbb{A}^n) \\ & = \codim(X, Z)
|
2022-02-16 02:31:15 +01:00
|
|
|
\end{align}
|
|
|
|
because $\mathfrak{k}^n$ is catenary and the first point follows.
|
|
|
|
The remaining assertions can easily be derived from the first two.
|
|
|
|
\end{proof}
|
|
|
|
|
|
|
|
\subsection{The cone $C(X)$}
|
|
|
|
\begin{definition}
|
2022-02-16 05:19:03 +01:00
|
|
|
If $X \subseteq \mathbb{P}^n$ is closed, we define the
|
|
|
|
\vocab{affine cone over
|
|
|
|
$X$}
|
2022-02-16 02:31:15 +01:00
|
|
|
\[
|
2022-02-16 05:19:03 +01:00
|
|
|
C(X) = \{0\} \cup \{(x_0,\ldots,x_n) \in \mathfrak{k}^{n+1} \setminus
|
|
|
|
\{0\} | [x_0,\ldots,x_n] \in X\}
|
|
|
|
\]
|
|
|
|
If $X = \Vp(I)$ where $I \subseteq A_+ =
|
|
|
|
\mathfrak{k}[X_0,\ldots,X_n]_+$ is homogeneous, then $C(X) =
|
|
|
|
\Va(I)$.
|
2022-02-16 02:31:15 +01:00
|
|
|
\end{definition}
|
2022-02-16 05:19:03 +01:00
|
|
|
\begin{proposition}
|
|
|
|
\label{conedim}
|
2022-02-16 02:31:15 +01:00
|
|
|
\begin{itemize}
|
2022-02-16 05:19:03 +01:00
|
|
|
\item
|
|
|
|
$C(X)$ is irreducible iff $X$ is irreducible or $X = \emptyset$.
|
|
|
|
\item
|
|
|
|
If $X$ is irreducible, then
|
|
|
|
|
|
|
|
$\dim(C(X)) = \dim(X) + 1$ and
|
2022-02-16 02:31:15 +01:00
|
|
|
|
2022-02-16 05:19:03 +01:00
|
|
|
$\codim(C(X), \mathfrak{k}^{n+1}) = \codim(X, \mathbb{P}^n)$
|
2022-02-16 02:31:15 +01:00
|
|
|
\end{itemize}
|
|
|
|
\end{proposition}
|
|
|
|
\begin{proof}
|
2022-02-16 05:19:03 +01:00
|
|
|
The first assertion follows from
|
|
|
|
\ref{bijproj} and
|
|
|
|
\ref{bijiredprim} (bijection
|
|
|
|
of irreducible subsets and prime ideals in the projective and affine case).
|
2022-02-16 02:31:15 +01:00
|
|
|
|
|
|
|
Let $d = \dim(X)$ and
|
|
|
|
\[
|
2022-02-16 05:19:03 +01:00
|
|
|
X_0 \subsetneq \ldots \subsetneq X_d = X \subsetneq
|
|
|
|
X_{d+1} \subsetneq \ldots \subsetneq X_n =
|
|
|
|
\mathbb{P}^n
|
|
|
|
\]
|
|
|
|
be a chain of
|
|
|
|
irreducible subsets of $\mathbb{P}^n$.
|
|
|
|
Then
|
2022-02-16 02:31:15 +01:00
|
|
|
\[
|
2022-02-16 05:19:03 +01:00
|
|
|
\{0\} \subsetneq C(X_0) \subsetneq \ldots \subsetneq C(X_d) = C(X)
|
|
|
|
\subsetneq \ldots \subsetneq C(X_n) = \mathfrak{k}^{n+1}
|
|
|
|
\]
|
|
|
|
is a chain of
|
|
|
|
irreducible subsets of $\mathfrak{k}^{n+1}$.
|
|
|
|
Hence $\dim(C(X)) \ge 1 + d$ and $\codim(C(X), \mathfrak{k}^{n+1}) \ge
|
|
|
|
n-d$.
|
|
|
|
Since $\dim(C(X)) + \codim(C(X), \mathfrak{k}^{n+1}) =
|
|
|
|
\dim(\mathfrak{k}^{n+1})
|
|
|
|
= n+1$, the two inequalities must be equalities.
|
2022-02-16 02:31:15 +01:00
|
|
|
\end{proof}
|
|
|
|
\subsubsection{Application to hypersurfaces in $\mathbb{P}^n$}
|
|
|
|
\begin{definition}[Hypersurface]
|
|
|
|
Let $n > 0$.
|
2022-02-16 05:19:03 +01:00
|
|
|
By a \vocab{hypersurface} in $\mathbb{P}^n$ or
|
|
|
|
$\mathbb{A}^n$ we understand an
|
|
|
|
irreducible closed subset of codimension $1$.
|
2022-02-16 02:31:15 +01:00
|
|
|
\end{definition}
|
|
|
|
|
|
|
|
\begin{corollary}
|
2022-02-16 05:19:03 +01:00
|
|
|
If $P \in A_d$ is a prime element, then $H = \Vp(P)$ is a
|
|
|
|
hypersurface in
|
|
|
|
$\mathbb{P}^n$ and every hypersurface $H$ in
|
|
|
|
$\mathbb{P}^n$ can be obtained in
|
|
|
|
this way.
|
2022-02-16 02:31:15 +01:00
|
|
|
\end{corollary}
|
|
|
|
\begin{proof}
|
2022-02-16 05:19:03 +01:00
|
|
|
If $H = \Vp(P)$ then $C(H) = \Va(P)$ is a
|
|
|
|
hypersurface in $\mathfrak{k}^{n+1}$
|
|
|
|
by
|
|
|
|
\ref{irredcodimone}.
|
|
|
|
By
|
|
|
|
\ref{conedim}, $H$ is irreducible and of codimension $1$.
|
|
|
|
|
|
|
|
Conversely, let $H$ be a hypersurface in $\mathbb{P}^n$.
|
|
|
|
By
|
|
|
|
\ref{conedim}, $C(H)$ is a hypersurface in
|
|
|
|
$\mathfrak{k}^{n+1}$, hence $C(H)
|
|
|
|
= \Vp(P)$ for some prime element $P \in A$ (again by
|
|
|
|
\ref{irredcodimone}).
|
|
|
|
We have $H = \Vp(\fp)$ for some $\fp \in
|
|
|
|
\Proj(A)$ and $C(H) = \Va(\fp)$.
|
|
|
|
By the bijection between closed subsets of $\mathfrak{k}^{n+1}$ and ideals
|
|
|
|
$I =
|
|
|
|
\sqrt{I} \subseteq A$ (
|
|
|
|
\ref{antimonbij}), $\fp = P \cdot
|
|
|
|
A$.
|
|
|
|
Let $P = \sum_{k=0}^{d}P_k$ with $P_d \neq 0$ be the decomposition
|
|
|
|
into
|
|
|
|
homogeneous components.
|
|
|
|
If $P_e $ with $e < d$ was $\neq 0$, it could not be a multiple of $P$
|
|
|
|
contradicting the homogeneity of $\fp = P \cdot A$.
|
|
|
|
Thus, $P$ is homogeneous of degree $d$.
|
2022-02-16 02:31:15 +01:00
|
|
|
\end{proof}
|
|
|
|
\begin{definition}
|
2022-02-16 05:19:03 +01:00
|
|
|
A hypersurface $H \subseteq \mathbb{P}^n$ has
|
|
|
|
\vocab{degree $d$} if $H =
|
|
|
|
\Vp(P)$ where $P \in A_d$ is an irreducible polynomial.
|
2022-02-16 02:31:15 +01:00
|
|
|
\end{definition}
|
|
|
|
|
2022-02-16 05:19:03 +01:00
|
|
|
\subsubsection{Application to intersections in $\mathbb{P}^n$ and Bezout's
|
|
|
|
theorem}
|
2022-02-16 02:31:15 +01:00
|
|
|
\begin{corollary}
|
2022-02-16 05:19:03 +01:00
|
|
|
Let $A \subseteq \mathbb{P}^n$ and $B \subseteq
|
|
|
|
\mathbb{P}^n$ be irreducible
|
|
|
|
subsets of dimensions $a$ and $b$.
|
|
|
|
If $a+ b \ge n$, then $A \cap B \neq \emptyset$ and every irreducible component
|
|
|
|
of $A \cap B$ as dimension $\ge a + b - n$.
|
2022-02-16 02:31:15 +01:00
|
|
|
\end{corollary}
|
|
|
|
|
|
|
|
\begin{remark}
|
2022-02-16 05:19:03 +01:00
|
|
|
This shows that $\mathbb{P}^n$ indeed fulfilled the goal of
|
|
|
|
allowing for nicer
|
|
|
|
results of algebraic geometry because ``solutions at infinity'' to systems of
|
|
|
|
algebraic equations are present in $\mathbb{P}^n$ (see
|
|
|
|
\ref{affineproblem}).
|
2022-02-16 02:31:15 +01:00
|
|
|
\end{remark}
|
|
|
|
|
|
|
|
\begin{proof}
|
2022-02-16 05:19:03 +01:00
|
|
|
The lower bound on the dimension of irreducible components of $A \cap B$ is
|
|
|
|
easily derived from the similar affine result (corollary of the principal ideal
|
|
|
|
theorem,
|
|
|
|
\ref{codimintersection}).
|
|
|
|
From the definition of the affine cone it follows that $C(A \cap B) = C(A) \cap
|
|
|
|
C(B)$.
|
|
|
|
We have $\dim(C(A)) = a+1$ and $\dim(C(B)) = b + 1$ by
|
|
|
|
\ref{conedim}.
|
|
|
|
If $A \cap B = \emptyset$, then $C(A) \cap C(B) = \{0\}$ with $\{0\} $ as an
|
|
|
|
irreducible component, contradicting the lower bound $a + b + 1 - n > 0$ for
|
|
|
|
the dimension of irreducible components of $C(A) \cap C(B)$ (again
|
|
|
|
\ref{codimintersection}).
|
2022-02-16 02:31:15 +01:00
|
|
|
\end{proof}
|
|
|
|
\begin{remark}[Bezout's theorem]
|
2022-02-16 05:19:03 +01:00
|
|
|
If $A \neq B$ are hypersurfaces of degree $a$ and $b$
|
|
|
|
in $\mathbb{P}^2$, then $A \cap B$ has $ab$ points counted by
|
|
|
|
(suitably defined) multiplicity.
|
2022-02-16 02:31:15 +01:00
|
|
|
\end{remark}
|
|
|
|
|
|
|
|
|
|
|
|
%TODO Proof of "Dimension of P^n"
|
|
|
|
% SLIDE APPLICATION TO HYPERSURFACES IN $\P^n$
|
|
|
|
%ERROR: C(H) = V_A(P)
|
|
|
|
%If n = 0, P = 0, V_P(P) = \emptyset is a problem!
|
|
|
|
|