use fancythm. remove \npr
This commit is contained in:
parent
93ce9390d4
commit
11a2ed07bb
2 changed files with 4 additions and 4 deletions
|
@ -773,7 +773,7 @@ In general, these inequalities may be strict.
|
||||||
\subsection{Transcendence degree}
|
\subsection{Transcendence degree}
|
||||||
\subsubsection{Matroids}
|
\subsubsection{Matroids}
|
||||||
\begin{definition}[Hull operator]
|
\begin{definition}[Hull operator]
|
||||||
\npr
|
|
||||||
Let $X$ be a set, $\cP(X)$ the power set of $X$. A \vocab{Hull operator} on $X$ is a map $\cP(X) \xrightarrow{\cH} \cP(X)$ such that
|
Let $X$ be a set, $\cP(X)$ the power set of $X$. A \vocab{Hull operator} on $X$ is a map $\cP(X) \xrightarrow{\cH} \cP(X)$ such that
|
||||||
\begin{enumerate}
|
\begin{enumerate}
|
||||||
\item[H1] $\A A \in \cP(X) ~ A \se \cH(A)$.
|
\item[H1] $\A A \in \cP(X) ~ A \se \cH(A)$.
|
||||||
|
@ -806,7 +806,7 @@ In general, these inequalities may be strict.
|
||||||
Let $L / K$ be a field extension and let $\cH(T)$ be the algebraic closure in $L$ of the subfield of $L$ generated by $K$ and $T$.\footnote{This is the intersection of all subfields of $L$ containing $K \cup T$, or the field of quotients of the sub-$K$-algebra of $L$ generated by $T$.}
|
Let $L / K$ be a field extension and let $\cH(T)$ be the algebraic closure in $L$ of the subfield of $L$ generated by $K$ and $T$.\footnote{This is the intersection of all subfields of $L$ containing $K \cup T$, or the field of quotients of the sub-$K$-algebra of $L$ generated by $T$.}
|
||||||
Then $\cH$ is a matroidal hull operator.
|
Then $\cH$ is a matroidal hull operator.
|
||||||
\end{lemma}
|
\end{lemma}
|
||||||
\begin{proof}\npr
|
\begin{proof}
|
||||||
H1, H2 and F are trivial. For an algebraically closed subfield $K \se M \se L$ we have $\cH(M) = M$. Thus $\cH(\cH(T)) = \cH(T)$ (H3).
|
H1, H2 and F are trivial. For an algebraically closed subfield $K \se M \se L$ we have $\cH(M) = M$. Thus $\cH(\cH(T)) = \cH(T)$ (H3).
|
||||||
|
|
||||||
Let $x,y \in L$, $T \se L$ and $x \in \cH(T \cup \{y\}) \sm \cH(T)$. We have to show that $y \in \cH(T \cup \{x\}) \sm \cH(T)$.
|
Let $x,y \in L$, $T \se L$ and $x \in \cH(T \cup \{y\}) \sm \cH(T)$. We have to show that $y \in \cH(T \cup \{x\}) \sm \cH(T)$.
|
||||||
|
|
|
@ -3,7 +3,7 @@
|
||||||
|
|
||||||
\RequirePackage{mkessler-math}
|
\RequirePackage{mkessler-math}
|
||||||
|
|
||||||
\RequirePackage[english, numberall]{mkessler-fancythm}
|
\RequirePackage[number in = section]{fancythm}
|
||||||
\RequirePackage{hyperref}
|
\RequirePackage{hyperref}
|
||||||
\RequirePackage[english, index]{mkessler-vocab}
|
\RequirePackage[english, index]{mkessler-vocab}
|
||||||
\RequirePackage{mkessler-hypersetup}
|
\RequirePackage{mkessler-hypersetup}
|
||||||
|
@ -36,12 +36,12 @@
|
||||||
\DeclareMathOperator{\hght}{ht}
|
\DeclareMathOperator{\hght}{ht}
|
||||||
\newcommand{\Wlog}{W.l.o.g. }
|
\newcommand{\Wlog}{W.l.o.g. }
|
||||||
|
|
||||||
\newcommand{\fm}{\ensuremath\mathfrak{m}}
|
|
||||||
\newcommand{\Vspec}{\ensuremath V_{\mathbb{S}}}%\Spec}}
|
\newcommand{\Vspec}{\ensuremath V_{\mathbb{S}}}%\Spec}}
|
||||||
\newcommand{\Vs}{\ensuremath V_{\mathbb{S}}}%\Spec}}
|
\newcommand{\Vs}{\ensuremath V_{\mathbb{S}}}%\Spec}}
|
||||||
\newcommand{\Va}{\ensuremath V_{\mathbb{A}}}%\Spec}}
|
\newcommand{\Va}{\ensuremath V_{\mathbb{A}}}%\Spec}}
|
||||||
\newcommand{\Vp}{\ensuremath V_{\mathbb{P}}}%\Spec}}
|
\newcommand{\Vp}{\ensuremath V_{\mathbb{P}}}%\Spec}}
|
||||||
\newcommand{\Pn}{\bP^n}%\Spec}}
|
\newcommand{\Pn}{\bP^n}%\Spec}}
|
||||||
|
|
||||||
\newcommand{\Span}[1]{\langle#1\rangle}
|
\newcommand{\Span}[1]{\langle#1\rangle}
|
||||||
\newcommand{\npr}{\footnote{Not relevant for the exam.}}
|
\newcommand{\npr}{\footnote{Not relevant for the exam.}}
|
||||||
\newcommand{\limrel}{\footnote{Limited relevance for the exam.}} % may appear in 3x questions
|
\newcommand{\limrel}{\footnote{Limited relevance for the exam.}} % may appear in 3x questions
|
||||||
|
|
Reference in a new issue