diff --git a/2021_Algebra_I.tex b/2021_Algebra_I.tex index 6519960..2022e60 100644 --- a/2021_Algebra_I.tex +++ b/2021_Algebra_I.tex @@ -1916,26 +1916,26 @@ $\rad(A) = f A$ where $f = \prod_{i=1}^{n} p_i$. \subsection{Projective spaces} Let $\mathfrak{l}$ be any field. \begin{definition} - For a $\mathfrak{l}$-vector space $V$, let $\bP(V)$ be the set of one-dimensional subspaces of $V$. - Let $\bP^n(\mathfrak{l}) \coloneqq \bP(\mathfrak{l}^{n+1})$, the \vocab[Projective space]{$n$-dimensional projective space over $\mathfrak{l}$}. + For a $\mathfrak{l}$-vector space $V$, let $\mathbb{P}(V)$ be the set of one-dimensional subspaces of $V$. + Let $\mathbb{P}^n(\mathfrak{l}) \coloneqq \mathbb{P}(\mathfrak{l}^{n+1})$, the \vocab[Projective space]{$n$-dimensional projective space over $\mathfrak{l}$}. - If $\mathfrak{l}$ is kept fixed, we will often write $\bP^n$ for $\bP^n(\mathfrak{l})$. + If $\mathfrak{l}$ is kept fixed, we will often write $\mathbb{P}^n$ for $\mathbb{P}^n(\mathfrak{l})$. - When dealing with $\bP^n$, the usual convention is to use $0$ as the index of the first coordinate. + When dealing with $\mathbb{P}^n$, the usual convention is to use $0$ as the index of the first coordinate. - We denote the one-dimensional subspace generated by $(x_0,\ldots,x_n) \in \mathfrak{k}^{n+1} \setminus \{0\}$ by $[x_0,\ldots,x_n] \in \bP^n$. - If $x = [x_0,\ldots,x_n] \in \bP^n$, the $(x_{i})_{i=0}^n$ are called \vocab{homogeneous coordinates} of $x$. + We denote the one-dimensional subspace generated by $(x_0,\ldots,x_n) \in \mathfrak{k}^{n+1} \setminus \{0\}$ by $[x_0,\ldots,x_n] \in \mathbb{P}^n$. + If $x = [x_0,\ldots,x_n] \in \mathbb{P}^n$, the $(x_{i})_{i=0}^n$ are called \vocab{homogeneous coordinates} of $x$. At least one of the $x_{i}$ must be $\neq 0$. \end{definition} \begin{remark} - There are points $[1,0], [0,1] \in \bP^1$ but there is no point $[0,0] \in \bP^1$. + There are points $[1,0], [0,1] \in \mathbb{P}^1$ but there is no point $[0,0] \in \mathbb{P}^1$. \end{remark} \begin{definition}[Infinite hyperplane] - For $0 \le i \le n$ let $U_i \subseteq \bP^n$ denote the set of $[x_0,\ldots,x_{n}]$ with $x_{i}\neq 0$. - This is a correct definition since two different sets $[x_0,\ldots,x_{n}]$ and $[\xi_0,\ldots,\xi_n]$ of homogeneous coordinates for the same point $x \in \bP^n$ differ by scaling with a $\lambda \in \mathfrak{l}^{\times}$, $x_i = \lambda \xi_i$. Since not all $x_i$ may be $0$, $\bP^n = \bigcup_{i=0}^n U_i$. We identify $\bA^n = \bA^n(\mathfrak{l}) = \mathfrak{l}^n$ with $U_0$ by identifying $(x_1,\ldots,x_n) \in \bA^n$ with $[1,x_1,\ldots,x_n] \in \bP^n$. - Then $\bP^1 = \bA^1 \cup \{\infty\} $ where $\infty=[0,1]$. More generally, when $n > 0$ $\bP^n \setminus \bA^n$ can be identified with $\bP^{n-1}$ identifying $[0,x_1,\ldots,x_n] \in \bP^n \setminus \bA^n$ with $[x_1,\ldots,x_n] \in \bP^{n-1}$. + For $0 \le i \le n$ let $U_i \subseteq \mathbb{P}^n$ denote the set of $[x_0,\ldots,x_{n}]$ with $x_{i}\neq 0$. + This is a correct definition since two different sets $[x_0,\ldots,x_{n}]$ and $[\xi_0,\ldots,\xi_n]$ of homogeneous coordinates for the same point $x \in \mathbb{P}^n$ differ by scaling with a $\lambda \in \mathfrak{l}^{\times}$, $x_i = \lambda \xi_i$. Since not all $x_i$ may be $0$, $\mathbb{P}^n = \bigcup_{i=0}^n U_i$. We identify $\mathbb{A}^n = \mathbb{A}^n(\mathfrak{l}) = \mathfrak{l}^n$ with $U_0$ by identifying $(x_1,\ldots,x_n) \in \mathbb{A}^n$ with $[1,x_1,\ldots,x_n] \in \mathbb{P}^n$. + Then $\mathbb{P}^1 = \mathbb{A}^1 \cup \{\infty\} $ where $\infty=[0,1]$. More generally, when $n > 0$ $\mathbb{P}^n \setminus \mathbb{A}^n$ can be identified with $\mathbb{P}^{n-1}$ identifying $[0,x_1,\ldots,x_n] \in \mathbb{P}^n \setminus \mathbb{A}^n$ with $[x_1,\ldots,x_n] \in \mathbb{P}^{n-1}$. - Thus $\bP^n$ is $\bA^n \cong \mathfrak{l}^n$ with a copy of $\bP^{n-1}$ added as an \vocab{infinite hyperplane} . + Thus $\mathbb{P}^n$ is $\mathbb{A}^n \cong \mathfrak{l}^n$ with a copy of $\mathbb{P}^{n-1}$ added as an \vocab{infinite hyperplane} . \end{definition} \subsubsection{Graded rings and homogeneous ideals} @@ -1984,7 +1984,7 @@ Let $\mathfrak{l}$ be any field. \end{fact} -\subsubsection{The Zariski topology on $\bP^n$} +\subsubsection{The Zariski topology on $\mathbb{P}^n$} \begin{notation} Recall that for $\alpha \in \N^{n+1}$ $|\alpha| = \sum_{i=0}^{n} \alpha_i$ and $x^\alpha = x_0^{\alpha_0} \cdot \ldots \cdot x_n^{\alpha_n}$. \end{notation} @@ -1996,15 +1996,15 @@ Let $\mathfrak{l}$ be any field. \begin{remark} This definition gives $R$ the structure of a graded ring. \end{remark} -\begin{definition}[Zariski topology on $\bP^n(\mathfrak{k})$]\label{ztoppn} +\begin{definition}[Zariski topology on $\mathbb{P}^n(\mathfrak{k})$]\label{ztoppn} Let $A = \mathfrak{k}[X_0,\ldots,X_n]$.\footnote{As always, $\mathfrak{k}$ is algebraically closed} For $f \in A_d = \mathfrak{k}[X_0,\ldots,X_n]_d$, the validity of the equation $f(x_0,\ldots,x_{n}) = 0$ does not depend on the choice of homogeneous coordinates, as \[ f(\lambda x_0,\ldots, \lambda x_n) 0 \lambda^d f(x_0,\ldots,x_n) \] - Let $\Vp(f) \coloneqq \{x \in \bP^n | f(x) = 0\}$. + Let $\Vp(f) \coloneqq \{x \in \mathbb{P}^n | f(x) = 0\}$. - We call a subset $X \subseteq \bP^n$ Zariski-closed if it can be represented as + We call a subset $X \subseteq \mathbb{P}^n$ Zariski-closed if it can be represented as \[ X = \bigcap_{i=1}^k \Vp(f_i) \] @@ -2012,7 +2012,7 @@ Let $\mathfrak{l}$ be any field. \end{definition} \pagebreak \begin{fact} - If $X = \bigcap_{i = 1}^k \Vp(f_i) \subseteq \bP^n$ is closed, then $Y = X \cap \bA^n$ can be identified with the closed subset + If $X = \bigcap_{i = 1}^k \Vp(f_i) \subseteq \mathbb{P}^n$ is closed, then $Y = X \cap \mathbb{A}^n$ can be identified with the closed subset \[ \{(x_1,\ldots,x_n) \in \mathfrak{k}^n | f_i(1,x_1,\ldots,x_n) = 0, 1 \le i \le k\} \subseteq \mathfrak{k}^n \] @@ -2020,17 +2020,17 @@ Let $\mathfrak{l}$ be any field. \[ \{(x_1,\ldots,x_n) \in \mathfrak{k}^n | g_i(x_1,\ldots,x_n) = 0, 1 \le i \le k\} \] - and can thus be identified with $X \cap \bA^n$ where $X \coloneqq \bigcap_{i=1}^k \Vp(f_i)$ is given by \[f_i(X_0,\ldots,X_n) \coloneqq X_0^{d_i} g_i(X_1 / X_0,\ldots, X_n / X_0), d_i \ge \deg(g_i)\] - Thus, the Zariski topology on $\mathfrak{k}^n$ can be identified with the topology induced by the Zariski topology on $\bA^n = U_0$, and the same holds for $U_i$ with $0 \le i \le n$. + and can thus be identified with $X \cap \mathbb{A}^n$ where $X \coloneqq \bigcap_{i=1}^k \Vp(f_i)$ is given by \[f_i(X_0,\ldots,X_n) \coloneqq X_0^{d_i} g_i(X_1 / X_0,\ldots, X_n / X_0), d_i \ge \deg(g_i)\] + Thus, the Zariski topology on $\mathfrak{k}^n$ can be identified with the topology induced by the Zariski topology on $\mathbb{A}^n = U_0$, and the same holds for $U_i$ with $0 \le i \le n$. - In this sense, the Zariski topology on $\bP^n$ can be thought of as gluing the Zariski topologies on the $U_i \cong \mathfrak{k}^n$. + In this sense, the Zariski topology on $\mathbb{P}^n$ can be thought of as gluing the Zariski topologies on the $U_i \cong \mathfrak{k}^n$. \end{fact} % The Zariski topology on P^n (2) \begin{definition} Let $I \subseteq A = \mathfrak{k}[X_0,\ldots,X_n]$ be a homogeneous ideal. - Let $\Vp(I) \coloneqq \{[x_0,\ldots,_n] \in \bP^n | \forall f \in I ~ f(x_0,\ldots,x_n) = 0\}$ + Let $\Vp(I) \coloneqq \{[x_0,\ldots,_n] \in \mathbb{P}^n | \forall f \in I ~ f(x_0,\ldots,x_n) = 0\}$ As $I$ is homogeneous, it is sufficient to impose this condition for the homogeneous elements $f \in I$. Because $A$ is Noetherian, $I$ can finitely generated by homogeneous elements $(f_i)_{i=1}^k$ and $\Vp(I)=\bigcap_{i=1}^k \Vp(f_i)$ as in \ref{ztoppn}. Conversely, if the homogeneous $f_i$ are given, then $I = \langle f_1,\ldots,f_k \rangle_A$ is homogeneous. @@ -2053,10 +2053,10 @@ Let $\mathfrak{l}$ be any field. By definition, a topological space is Noetherian $\iff$ all open subsets are quasi-compact. \end{proof} \begin{corollary} - The Zariski topology on $\bP^n$ is indeed a topology. - The induced topology on the open set $\bA^n = \bP^n \setminus \Vp(X_0) \cong \mathfrak{k}^n$ is the Zariski topology on $\mathfrak{k}^n$. - The same holds for all $U_i = \bP^n \setminus \Vp(X_i) \cong \mathfrak{k}^n$. - Moreover, the topological space $\bP^n$ is Noetherian. + The Zariski topology on $\mathbb{P}^n$ is indeed a topology. + The induced topology on the open set $\mathbb{A}^n = \mathbb{P}^n \setminus \Vp(X_0) \cong \mathfrak{k}^n$ is the Zariski topology on $\mathfrak{k}^n$. + The same holds for all $U_i = \mathbb{P}^n \setminus \Vp(X_i) \cong \mathfrak{k}^n$. + Moreover, the topological space $\mathbb{P}^n$ is Noetherian. \end{corollary} \subsection{Noetherianness of graded rings} @@ -2098,14 +2098,14 @@ Let $\mathfrak{l}$ be any field. % Lecture 12 -\subsection{The projective form of the Nullstellensatz and the closed subsets of $\bP^n$} +\subsection{The projective form of the Nullstellensatz and the closed subsets of $\mathbb{P}^n$} Let $A = \mathfrak{k}[X_0,\ldots,X_n]$. \begin{proposition}[Projective form of the Nullstellensatz]\label{hnsp} If $I \subseteq A$ is a homogeneous ideal and $f \in A_d$ with $d>0$, then $\Vp(I) \subseteq \Vp(f) \iff f \in \sqrt{I}$. \end{proposition} \begin{proof} $\impliedby$ is clear. Let $\Vp(I) \subseteq \Vp(f)$. If $x = (x_0,\ldots,x_n) \in \Va(I)$, then either $x = 0$ in which case $f(x) = 0$ since $d > 0$ - or the point $[x_0,\ldots,x_n] \in \bP^n$ is well-defined and belongs to $\Vp(I) \subseteq \Vp(f)$, hence $f(x) = 0$. + or the point $[x_0,\ldots,x_n] \in \mathbb{P}^n$ is well-defined and belongs to $\Vp(I) \subseteq \Vp(f)$, hence $f(x) = 0$. Thus $\Va(I) \subseteq \Va(f)$ and $f \in \sqrt{I}$ be the Nullstellensatz (\ref{hns3}). \end{proof} @@ -2119,7 +2119,7 @@ Let $A = \mathfrak{k}[X_0,\ldots,X_n]$. \begin{proposition}\label{bijproj} There is a bijection \begin{align} - f: \{I \subseteq A_+ | I \text{ homogeneous ideal}, I = \sqrt{I}\} &\longrightarrow \{X \subseteq \bP^n | X \text{ closed}\} \\ + f: \{I \subseteq A_+ | I \text{ homogeneous ideal}, I = \sqrt{I}\} &\longrightarrow \{X \subseteq \mathbb{P}^n | X \text{ closed}\} \\ I &\longmapsto \Vp(I)\\ \langle \{f \in A_d | d > 0, X \subseteq \Vp(f)\} \rangle & \longmapsfrom X \end{align} @@ -2127,7 +2127,7 @@ Let $A = \mathfrak{k}[X_0,\ldots,X_n]$. \end{proposition} \begin{proof} From the projective form of the Nullstellensatz it follows that $f$ is injective and that $f^{-1}(\Vp\left( I \right)) = \sqrt{I} = I$. - If $X \subseteq \bP^n$ is closed, then $X = \Vp(J)$ for some homogeneous ideal $J \subseteq A$. \Wlog $J = \sqrt{J}$. If $J \not\subseteq A_+$, then $J = A$ (\ref{proja}), hence $X = \Vp(J) = \emptyset = \Vp(A_+)$. + If $X \subseteq \mathbb{P}^n$ is closed, then $X = \Vp(J)$ for some homogeneous ideal $J \subseteq A$. \Wlog $J = \sqrt{J}$. If $J \not\subseteq A_+$, then $J = A$ (\ref{proja}), hence $X = \Vp(J) = \emptyset = \Vp(A_+)$. Thus we may assume $J \subseteq A_+$, and $f$ is surjective. @@ -2145,7 +2145,7 @@ Let $A = \mathfrak{k}[X_0,\ldots,X_n]$. It is important that $I \subseteq A_{\color{red} +}$, since $\Vp(A) = \Vp(A_+) = \emptyset$ would be a counterexample. \end{remark} \begin{corollary} - $\bP^n$ is irreducible. + $\mathbb{P}^n$ is irreducible. \end{corollary} \begin{proof} Apply \ref{bijproj} to $\{0\} \in \Proj(A_\bullet)$. @@ -2173,24 +2173,24 @@ Let $A = \mathfrak{k}[X_0,\ldots,X_n]$. \[\{\fp \in \Spec R | \fp \text{ is a homogeneous ideal of } R_\bullet\} = \Proj(R_\bullet) \sqcup \{\fp \oplus R_+ | \fp \in \Spec R_0\}\] \end{remark} -\subsection{Dimension of $\bP^n$} +\subsection{Dimension of $\mathbb{P}^n$} \begin{proposition} \begin{itemize} - \item $\bP^n$ is catenary. - \item $\dim(\bP^n) = n$. Moreover, $\codim(\{x\} ,\bP^n) = n$ for every $x \in \bP^n$. - \item If $X \subseteq \bP^n$ is irreducible and $x \in X$, then $\codim(\{x\}, X) = \dim(X) = n - \codim(X, \bP^n)$. - \item If $X \subseteq Y \subseteq \bP^n$ are irreducible subsets, then $\codim(X,Y) = \dim(Y) - \dim(X)$. + \item $\mathbb{P}^n$ is catenary. + \item $\dim(\mathbb{P}^n) = n$. Moreover, $\codim(\{x\} ,\mathbb{P}^n) = n$ for every $x \in \mathbb{P}^n$. + \item If $X \subseteq \mathbb{P}^n$ is irreducible and $x \in X$, then $\codim(\{x\}, X) = \dim(X) = n - \codim(X, \mathbb{P}^n)$. + \item If $X \subseteq Y \subseteq \mathbb{P}^n$ are irreducible subsets, then $\codim(X,Y) = \dim(Y) - \dim(X)$. \end{itemize} \end{proposition} \begin{proof} - Let $X \subseteq \bP^n$ be irreducible. If $x \in X$, there is an integer $0 \le i \le n$ and $X \in U_i = \bP^n \setminus \Vp(X_i)$. - \Wlog $i = 0$. Then $\codim(X, \bP^n) = \codim(X \cap \bA^n, \bA^n)$ by the locality of Krull codimension (\ref{lockrullcodim}). + Let $X \subseteq \mathbb{P}^n$ be irreducible. If $x \in X$, there is an integer $0 \le i \le n$ and $X \in U_i = \mathbb{P}^n \setminus \Vp(X_i)$. + \Wlog $i = 0$. Then $\codim(X, \mathbb{P}^n) = \codim(X \cap \mathbb{A}^n, \mathbb{A}^n)$ by the locality of Krull codimension (\ref{lockrullcodim}). Applying this with $X = \{x\}$ and our results about the affine case gives the second assertion. - If $Y$ and $Z$ are also irreducible with $X \subseteq Y \subseteq Z$, then $\codim(X,Y) = \codim(X \cap \bA^n, Y \cap \bA^n)$, $\codim(X,Z) = \codim(X \cap \bA^n, Z \cap \bA^n)$ and $\codim(Y,Z) = \codim(Y \cap \bA^n, Z \cap \bA^n)$. + If $Y$ and $Z$ are also irreducible with $X \subseteq Y \subseteq Z$, then $\codim(X,Y) = \codim(X \cap \mathbb{A}^n, Y \cap \mathbb{A}^n)$, $\codim(X,Z) = \codim(X \cap \mathbb{A}^n, Z \cap \mathbb{A}^n)$ and $\codim(Y,Z) = \codim(Y \cap \mathbb{A}^n, Z \cap \mathbb{A}^n)$. Thus \begin{align} - \codim(X,Y) + \codim(Y,Z) &= \codim(X \cap \bA^n, Y \cap \bA^n) + \codim(Y \cap \bA^n, Z \cap \bA^n)\\ - &= \codim(X \cap \bA^n, Z \cap \bA^n)\\ + \codim(X,Y) + \codim(Y,Z) &= \codim(X \cap \mathbb{A}^n, Y \cap \mathbb{A}^n) + \codim(Y \cap \mathbb{A}^n, Z \cap \mathbb{A}^n)\\ + &= \codim(X \cap \mathbb{A}^n, Z \cap \mathbb{A}^n)\\ &= \codim(X, Z) \end{align} because $\mathfrak{k}^n$ is catenary and the first point follows. @@ -2199,7 +2199,7 @@ Let $A = \mathfrak{k}[X_0,\ldots,X_n]$. \subsection{The cone $C(X)$} \begin{definition} - If $X \subseteq \bP^n$ is closed, we define the \vocab{affine cone over $X$} + If $X \subseteq \mathbb{P}^n$ is closed, we define the \vocab{affine cone over $X$} \[ C(X) = \{0\} \cup \{(x_0,\ldots,x_n) \in \mathfrak{k}^{n+1} \setminus \{0\} | [x_0,\ldots,x_n] \in X\} \] @@ -2212,7 +2212,7 @@ Let $A = \mathfrak{k}[X_0,\ldots,X_n]$. $\dim(C(X)) = \dim(X) + 1$ and - $\codim(C(X), \mathfrak{k}^{n+1}) = \codim(X, \bP^n)$ + $\codim(C(X), \mathfrak{k}^{n+1}) = \codim(X, \mathbb{P}^n)$ \end{itemize} \end{proposition} \begin{proof} @@ -2220,42 +2220,42 @@ Let $A = \mathfrak{k}[X_0,\ldots,X_n]$. Let $d = \dim(X)$ and \[ - X_0 \subsetneq \ldots \subsetneq X_d = X \subsetneq X_{d+1} \subsetneq \ldots \subsetneq X_n = \bP^n + X_0 \subsetneq \ldots \subsetneq X_d = X \subsetneq X_{d+1} \subsetneq \ldots \subsetneq X_n = \mathbb{P}^n \] - be a chain of irreducible subsets of $\bP^n$. Then + be a chain of irreducible subsets of $\mathbb{P}^n$. Then \[ \{0\} \subsetneq C(X_0) \subsetneq \ldots \subsetneq C(X_d) = C(X) \subsetneq \ldots \subsetneq C(X_n) = \mathfrak{k}^{n+1} \] is a chain of irreducible subsets of $\mathfrak{k}^{n+1}$. Hence $\dim(C(X)) \ge 1 + d$ and $\codim(C(X), \mathfrak{k}^{n+1}) \ge n-d$. Since $\dim(C(X)) + \codim(C(X), \mathfrak{k}^{n+1}) = \dim(\mathfrak{k}^{n+1}) = n+1$, the two inequalities must be equalities. \end{proof} -\subsubsection{Application to hypersurfaces in $\bP^n$} +\subsubsection{Application to hypersurfaces in $\mathbb{P}^n$} \begin{definition}[Hypersurface] Let $n > 0$. - By a \vocab{hypersurface} in $\bP^n$ or $\bA^n$ we understand an irreducible closed subset of codimension $1$. + By a \vocab{hypersurface} in $\mathbb{P}^n$ or $\mathbb{A}^n$ we understand an irreducible closed subset of codimension $1$. \end{definition} \begin{corollary} - If $P \in A_d$ is a prime element, then $H = \Vp(P)$ is a hypersurface in $\bP^n$ and every hypersurface $H$ in $\bP^n$ can be obtained in this way. + If $P \in A_d$ is a prime element, then $H = \Vp(P)$ is a hypersurface in $\mathbb{P}^n$ and every hypersurface $H$ in $\mathbb{P}^n$ can be obtained in this way. \end{corollary} \begin{proof} If $H = \Vp(P)$ then $C(H) = \Va(P)$ is a hypersurface in $\mathfrak{k}^{n+1}$ by \ref{irredcodimone}. By \ref{conedim}, $H$ is irreducible and of codimension $1$. - Conversely, let $H$ be a hypersurface in $\bP^n$. By \ref{conedim}, $C(H)$ is a hypersurface in $\mathfrak{k}^{n+1}$, hence $C(H) = \Vp(P)$ for some prime element $P \in A$ (again by \ref{irredcodimone}). + Conversely, let $H$ be a hypersurface in $\mathbb{P}^n$. By \ref{conedim}, $C(H)$ is a hypersurface in $\mathfrak{k}^{n+1}$, hence $C(H) = \Vp(P)$ for some prime element $P \in A$ (again by \ref{irredcodimone}). We have $H = \Vp(\fp)$ for some $\fp \in \Proj(A)$ and $C(H) = \Va(\fp)$. By the bijection between closed subsets of $\mathfrak{k}^{n+1}$ and ideals $I = \sqrt{I} \subseteq A$ (\ref{antimonbij}), $\fp = P \cdot A$. Let $P = \sum_{k=0}^{d}P_k$ with $P_d \neq 0$ be the decomposition into homogeneous components. If $P_e $ with $e < d$ was $\neq 0$, it could not be a multiple of $P$ contradicting the homogeneity of $\fp = P \cdot A$. Thus, $P$ is homogeneous of degree $d$. \end{proof} \begin{definition} - A hypersurface $H \subseteq \bP^n$ has \vocab{degree $d$} if $H = \Vp(P)$ where $P \in A_d$ is an irreducible polynomial. + A hypersurface $H \subseteq \mathbb{P}^n$ has \vocab{degree $d$} if $H = \Vp(P)$ where $P \in A_d$ is an irreducible polynomial. \end{definition} -\subsubsection{Application to intersections in $\bP^n$ and Bezout's theorem} +\subsubsection{Application to intersections in $\mathbb{P}^n$ and Bezout's theorem} \begin{corollary} - Let $A \subseteq \bP^n$ and $B \subseteq \bP^n$ be irreducible subsets of dimensions $a$ and $b$. If $a+ b \ge n$, then $A \cap B \neq \emptyset$ and every irreducible component of $A \cap B$ as dimension $\ge a + b - n$. + Let $A \subseteq \mathbb{P}^n$ and $B \subseteq \mathbb{P}^n$ be irreducible subsets of dimensions $a$ and $b$. If $a+ b \ge n$, then $A \cap B \neq \emptyset$ and every irreducible component of $A \cap B$ as dimension $\ge a + b - n$. \end{corollary} \begin{remark} - This shows that $\bP^n$ indeed fulfilled the goal of allowing for nicer results of algebraic geometry because ``solutions at infinity'' to systems of algebraic equations are present in $\bP^n$ + This shows that $\mathbb{P}^n$ indeed fulfilled the goal of allowing for nicer results of algebraic geometry because ``solutions at infinity'' to systems of algebraic equations are present in $\mathbb{P}^n$ (see \ref{affineproblem}). \end{remark} @@ -2266,7 +2266,7 @@ If $P_e $ with $e < d$ was $\neq 0$, it could not be a multiple of $P$ contradic If $A \cap B = \emptyset$, then $C(A) \cap C(B) = \{0\}$ with $\{0\} $ as an irreducible component, contradicting the lower bound $a + b + 1 - n > 0$ for the dimension of irreducible components of $C(A) \cap C(B)$ (again \ref{codimintersection}). \end{proof} \begin{remark}[Bezout's theorem] - If $A \neq B$ are hypersurfaces of degree $a$ and $b$ in $\bP^2$, then $A \cap B$ has $ab$ points counted by (suitably defined) multiplicity. + If $A \neq B$ are hypersurfaces of degree $a$ and $b$ in $\mathbb{P}^2$, then $A \cap B$ has $ab$ points counted by (suitably defined) multiplicity. \end{remark} @@ -2408,8 +2408,8 @@ is an isomorphism. \] Hence $\phi = F\defon{X}$. \end{proof} -\subsubsection{The structure sheaf on closed subsets of $\bP^n$} -Let $X \subseteq \bP^n$ be closed and $R_\bullet = \mathfrak{k}[X_0,\ldots,X_n]$ with its usual grading. +\subsubsection{The structure sheaf on closed subsets of $\mathbb{P}^n$} +Let $X \subseteq \mathbb{P}^n$ be closed and $R_\bullet = \mathfrak{k}[X_0,\ldots,X_n]$ with its usual grading. \begin{definition}\label{structuresheafpn} For open $U \subseteq X$, let $\mathcal{O}_X(U)$ be the set of functions $U \xrightarrow{\phi} \mathfrak{k}$ such that for every $x \in U$, there are an open subset $W \subseteq U$, a natural number $d$ and $f,g \in R_d$ such that $W \cap \Vp(g) = \emptyset$ and $\phi(y) = \frac{f(y_0,\ldots,y_n)}{g(y_0,\ldots,y_n)}$ for $y = [y_0,\ldots,y_n] \in W$. @@ -2417,10 +2417,10 @@ Let $X \subseteq \bP^n$ be closed and $R_\bullet = \mathfrak{k}[X_0,\ldots,X_n]$ \begin{remark} This is a subsheaf of rings of the sheaf of $\mathfrak{k}$-valued functions on $X$. -Under the identification $\bA^n =\mathfrak{k}^n$ with $\bP^n \setminus \Vp(X_0)$, one has $\mathcal{O}_X \defon{X \setminus \Vp(X_0)} = \mathcal{O}_{X \cap \bA^n}$ as subsheaves of the sheaf of $\mathfrak{k}$-valued functions, where the second sheaf is a sheaf on a closed subset of $\mathfrak{k}^n$: +Under the identification $\mathbb{A}^n =\mathfrak{k}^n$ with $\mathbb{P}^n \setminus \Vp(X_0)$, one has $\mathcal{O}_X \defon{X \setminus \Vp(X_0)} = \mathcal{O}_{X \cap \mathbb{A}^n}$ as subsheaves of the sheaf of $\mathfrak{k}$-valued functions, where the second sheaf is a sheaf on a closed subset of $\mathfrak{k}^n$: Indeed, if $W$ is as in the definition then $\phi([1,y_1,\ldots,y_n]) = \frac{f(1,y_1,\ldots,y_n)}{g(1,y_1,\ldots,y_n)}$ for $[1,y_1,\ldots,y_n] \in W$. -Conversely if $\phi([1,y_1,\ldots,y_n]) = \frac{f(y_1,\ldots,y_n)}{g(y_1,\ldots,y_n)}$ on an open subset $W $ of $X \cap \bA^n$ then +Conversely if $\phi([1,y_1,\ldots,y_n]) = \frac{f(y_1,\ldots,y_n)}{g(y_1,\ldots,y_n)}$ on an open subset $W $ of $X \cap \mathbb{A}^n$ then $\phi([y_0,\ldots,y_n]) = \frac{F(y_0,\ldots,y_n)}{G(y_0,\ldots,y_n)}$ on $W$ where $F(X_0,\ldots,X_n) \coloneqq X_0^d f(\frac{X_1}{X_0}, \ldots, \frac{X_n}{X_0})$ and $G(X_0,\ldots,X_n) = X_0^d g(\frac{X_1}{X_0},\ldots, \frac{X_n}{X_0})$ with a sufficiently large $d \in \N$. \end{remark} \begin{remark} @@ -2523,8 +2523,8 @@ The following is somewhat harder than in the affine case: \begin{example} \begin{itemize} \item If $(X, \mathcal{O}_X)$ is a variety and $U \subseteq X$ open, then $(U, \mathcal{O}_X\defon{U})$ is a variety (called an \vocab{open subvariety} of $X$), and the embedding $U \to X$ is a morphism of varieties. - \item If $X$ is a closed subset of $\mathfrak{k}^n$ or $\bP^n$, then $(X, \mathcal{O}_X)$ is a variety, where $\mathcal{O}_X$ is the structure sheaf on $X$ (\ref{structuresheafkn}, reps. \ref{structuresheafpn}). - A variety is called \vocab[Variety!affine]{affine} (resp. \vocab[Variety!projective]{projective}) if it is isomorphic to a variety of this form, with $X $ closed in $\mathfrak{k}^n$ (resp. $\bP^n$). + \item If $X$ is a closed subset of $\mathfrak{k}^n$ or $\mathbb{P}^n$, then $(X, \mathcal{O}_X)$ is a variety, where $\mathcal{O}_X$ is the structure sheaf on $X$ (\ref{structuresheafkn}, reps. \ref{structuresheafpn}). + A variety is called \vocab[Variety!affine]{affine} (resp. \vocab[Variety!projective]{projective}) if it is isomorphic to a variety of this form, with $X $ closed in $\mathfrak{k}^n$ (resp. $\mathbb{P}^n$). A variety which is isomorphic to and open subvariety of $X$ is called \vocab[Variety!quasi-affine]{quasi-affine} (resp. \vocab[Variety!quasi-projective]{quasi-projective}). \item If $X = V(X^2 - Y^3) \subseteq \mathfrak{k}^2$ then $\mathfrak{k} \xrightarrow{t \mapsto (t^3,t^2)} X$ is a morphism which is a homeomorphism of topological spaces but not an isomorphism of varieties. % TODO @@ -2786,20 +2786,20 @@ If $X$ is a set, then $\cB \subseteq \mathcal{P}(X)$ is a base for some topology \end{proof} \subsubsection{Intersection multiplicities and Bezout's theorem} \begin{definition} - Let $R = \mathfrak{k}[X_0,X_1,X_2]$ equipped with its usual grading and let $x \in \bP^{2}$. + Let $R = \mathfrak{k}[X_0,X_1,X_2]$ equipped with its usual grading and let $x \in \mathbb{P}^{2}$. Let $G \in R_g, H \in R_h$ be homogeneous polynomials with $x \in V(G) \cap V(h)$. -Let $\ell\in R_1$ such that $\ell(x) \neq 0$. Then $x \in U = \bP^2 \setminus V(\ell)$ and the rational functions $\gamma = \ell^{-g}G, \eta = \ell^{-h}H$ are elements of $\mathcal{O}_{\bP^2}(U)$. -Let $I_x(G,H) \subseteq \mathcal{O}_{\bP^2,x}$ denote the ideal generated by $\gamma_x$ and $\eta_x$. +Let $\ell\in R_1$ such that $\ell(x) \neq 0$. Then $x \in U = \mathbb{P}^2 \setminus V(\ell)$ and the rational functions $\gamma = \ell^{-g}G, \eta = \ell^{-h}H$ are elements of $\mathcal{O}_{\mathbb{P}^2}(U)$. +Let $I_x(G,H) \subseteq \mathcal{O}_{\mathbb{P}^2,x}$ denote the ideal generated by $\gamma_x$ and $\eta_x$. \noindent The dimension $\dim_{\mathfrak{k}}(\mathcal{O}_{X,x} / I_x(G,H)) \text{\reflectbox{$\coloneqq$}} i_x(G,H)$ is called the \vocab{intersection multiplicity} of $G$ and $H$ at $x$. \end{definition} \begin{remark} - If $\tilde \ell \in R_1$ also satisfies $\tilde \ell(x) \neq 0$, then the image of $\tilde \ell / \ell$ under $\mathcal{O}_{\bP^2}(U) \to \mathcal{O}_{\bP^2,x}$ is a unit, showing that the image of $\tilde \gamma = \tilde \ell^{-g} G$ in $\mathcal{O}_{\bP^2,x}$ is multiplicatively equivalent to $\gamma_x$, and similarly for $\eta_x$. + If $\tilde \ell \in R_1$ also satisfies $\tilde \ell(x) \neq 0$, then the image of $\tilde \ell / \ell$ under $\mathcal{O}_{\mathbb{P}^2}(U) \to \mathcal{O}_{\mathbb{P}^2,x}$ is a unit, showing that the image of $\tilde \gamma = \tilde \ell^{-g} G$ in $\mathcal{O}_{\mathbb{P}^2,x}$ is multiplicatively equivalent to $\gamma_x$, and similarly for $\eta_x$. Thus $I_x(G,H)$ does not depend on the choice of $\ell \in R_1$ with $\ell(x) \neq 0$. \end{remark} \begin{theorem}[Bezout's theorem] - In the above situation, assume that $V(H)$ and $V(G)$ intersect properly in the sense that $V(G) \cap V(H) \subseteq \bP^2$ has no irreducible component of dimension $\ge 1$. + In the above situation, assume that $V(H)$ and $V(G)$ intersect properly in the sense that $V(G) \cap V(H) \subseteq \mathbb{P}^2$ has no irreducible component of dimension $\ge 1$. Then \[ \sum_{x \in V(G) \cap V(H)} i_x(G,H) = gh