fix subsection
This commit is contained in:
parent
26e770c9ff
commit
2366deba0a
1 changed files with 5 additions and 5 deletions
|
@ -31,7 +31,7 @@ Fields which are not assumed to be algebraically closed have been renamed (usual
|
|||
\pagebreak
|
||||
|
||||
|
||||
\subseteqction{Finiteness conditions}
|
||||
\subsection{Finiteness conditions}
|
||||
|
||||
\subsection{Finitely generated and Noetherian modules}
|
||||
|
||||
|
@ -313,7 +313,7 @@ is injective. $n$ and the $a_i$ can be chosen such that $A$ is finite over the i
|
|||
This contradicts the minimality of $n$, as $B$ can be generated by $< n$ elements $b_i$.
|
||||
|
||||
\end{proof}
|
||||
\subseteqction{The Nullstellensatz and the Zariski topology}
|
||||
\subsection{The Nullstellensatz and the Zariski topology}
|
||||
\subsection{The Nullstellensatz} %LECTURE 1
|
||||
Let $\mathfrak{k}$ be a field, $R \coloneqq \mathfrak{k}[X_1,\ldots,X_n], I \subseteq R$ an ideal.
|
||||
|
||||
|
@ -1919,7 +1919,7 @@ $\rad(A) = f A$ where $f = \prod_{i=1}^{n} p_i$.
|
|||
|
||||
% Lecture 11
|
||||
|
||||
\subseteqction{Projective spaces}
|
||||
\subsection{Projective spaces}
|
||||
Let $\mathfrak{l}$ be any field.
|
||||
\begin{definition}
|
||||
For a $\mathfrak{l}$-vector space $V$, let $\bP(V)$ be the set of one-dimensional subspaces of $V$.
|
||||
|
@ -2284,7 +2284,7 @@ If $P_e $ with $e < d$ was $\neq 0$, it could not be a multiple of $P$ contradic
|
|||
|
||||
|
||||
% Lecture 13
|
||||
\subseteqction{Varieties}
|
||||
\subsection{Varieties}
|
||||
|
||||
\subsection{Sheaves}
|
||||
|
||||
|
@ -2934,7 +2934,7 @@ Original (Noether normalization)
|
|||
Artin-Tate
|
||||
Uncountable fields
|
||||
\begin{landscape}
|
||||
\subseteqction{Übersicht}
|
||||
\subsection{Übersicht}
|
||||
{\rowcolors{2}{gray!10}{white}
|
||||
\begin{longtable}{lll}
|
||||
\end{longtable}
|
||||
|
|
Reference in a new issue