From 5f94d265461ea4ce3655a2a8da27413329a5adae Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Maximilian=20Ke=C3=9Fler?= Date: Wed, 16 Feb 2022 02:53:18 +0100 Subject: [PATCH] replace ker --- algebra.sty | 1 - inputs/nullstellensatz_and_zariski_topology.tex | 2 +- 2 files changed, 1 insertion(+), 2 deletions(-) diff --git a/algebra.sty b/algebra.sty index 2b3f4c7..6d24916 100644 --- a/algebra.sty +++ b/algebra.sty @@ -37,7 +37,6 @@ \newcommand{\Vp}{\ensuremath V_{\mathbb{P}}}%\Spec}} \newcommand{\Pn}{\bP^n}%\Spec}} -\DeclareMathOperator{\Ker}{Ker} \DeclareMathOperator{\nil}{\mathfrak{nil}} \usetikzlibrary{arrows.meta, diff --git a/inputs/nullstellensatz_and_zariski_topology.tex b/inputs/nullstellensatz_and_zariski_topology.tex index 6d94183..e243c80 100644 --- a/inputs/nullstellensatz_and_zariski_topology.tex +++ b/inputs/nullstellensatz_and_zariski_topology.tex @@ -680,7 +680,7 @@ Let $R = \mathfrak{k}[X_1,\ldots,X_n]$. \end{proof} \begin{remark} - $i$ is often not injective and $\Ker(i) = \{r \in R | \exists s \in S ~ s \cdot r = 0\} $. + $i$ is often not injective and $\ker(i) = \{r \in R | \exists s \in S ~ s \cdot r = 0\} $. In particular $(r = 1)$, $R_S$ is the null ring iff $0 \in S$. \end{remark} \begin{notation}