
Algebra 1

Lecturer: Prof. Dr. Jens Franke
Notes: Josia Pietsch

January 7, 2022

Contents
1 Finiteness conditions 3

1.1 Finitely generated and Noetherian modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.1 Properties of finite generation and Noetherianness . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Ring extensions of finite type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Finite ring extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Determinants and Caley-Hamilton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Integral elements and integral ring extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Finiteness, finite generation and integrality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.7 Noether normalization theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 The Nullstellensatz and the Zariski topology 7
2.1 The Nullstellensatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Nullstellensatz for uncountable fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 The Zariski topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Operations on ideals and VA (I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Definition of the Zariski topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Separation properties of topological spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.4 Compactness properties of topological spaces . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Another form of the Nullstellensatz and Noetherianness of kn . . . . . . . . . . . . . . . . . . . . 11
2.4 Irreducible spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Irreducible components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Decomposition into irreducible subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Krull dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.1 Krull dimension of kn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Transcendence degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6.1 Matroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6.2 Transcendence degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.7 Inheritance of Noetherianness and of finite type by subrings and subalgebras / Artin-Tate . . . . 16
2.7.1 Artin-Tate proof of the Nullstellensatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.8 Transcendence degree and Krull dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.9 The spectrum of a ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.10 Localization of rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.11 A first result of dimension theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.12 Local rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.12.1 Localization at a prime ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.13 Going-up and going-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.13.1 Going-up for integral ring extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.13.2 Application to dimension theory: Proof of dimY = trdeg(K(Y )/k) . . . . . . . . . . . . . 23
2.13.3 Prime avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.13.4 The fixed field of the automorphism group of a normal field extension . . . . . . . . . . . 24
2.13.5 Integral closure and normal domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.13.6 Action of Aut(L/K) on prime ideals of a normal ring extension . . . . . . . . . . . . . . . 26
2.13.7 A going-down theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.13.8 Proof of codim({y}, Y ) = trdeg(K(Y )/k) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.14 The height of a prime ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.14.1 The relation between ht(p) and trdeg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.15 Dimension of products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1/48



Algebra 1

2.16 The nil radical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.16.1 Closed subsets of SpecR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.17 The principal ideal theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.17.1 Application to the dimension of intersections . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.17.2 Application to the property of being a UFD . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.18 The Jacobson radical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Projective spaces 33
3.0.1 Graded rings and homogeneous ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.0.2 The Zariski topology on Pn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Noetherianness of graded rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 The projective form of the Nullstellensatz and the closed subsets of Pn . . . . . . . . . . . . . . . 36
3.3 Some remarks on homogeneous prime ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Dimension of Pn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5 The cone C(X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5.1 Application to hypersurfaces in Pn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5.2 Application to intersections in Pn and Bezout’s theorem . . . . . . . . . . . . . . . . . . . 38

4 Varieties 39
4.1 Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Examples of sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.2 The structure sheaf on a closed subset of kn . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.3 The structure sheaf on closed subsets of Pn . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 The notion of a category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.1 Examples of categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.2 Subcategories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.3 Functors and equivalences of categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 The category of varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.1 The category of affine varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.2 Affine open subsets are a topology base . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Stalks of sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.1 The local ring of an affine variety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4.2 Intersection multiplicities and Bezout’s theorem . . . . . . . . . . . . . . . . . . . . . . . . 47

Index 48

Warning . This is not an official script! This document was written in preparation for the oral exam. It mostly
follows the way Prof. Franke presented the material in his lecture rather closely. There are probably errors.

The LATEXtemplate by Maximilian Kessler is published under the MIT-License and can be obtained from
https://github.com/kesslermaximilian/LatexPackages.

k is always an algebraically closed field and kn is equipped with the Zariski-topology. Fields which are not
assumed to be algebraically closed have been renamed (usually to l).

2/48

https://github.com/kesslermaximilian/LatexPackages


Algebra 1

1 Finiteness conditions

1.1 Finitely generated and Noetherian modules

Definition 1.1 (Generated submodule). Let R be a ring, M an R-module, S ⊆ M . Then the following
sets coincide

1.
{∑

s∈S′ rs · s | S ⊆ S′finite, rs ∈ R,
}

2.
⋂

S⊆N⊆M
Nsubmodule

N

3. The ⊆-smallest submodule of M containing S

This subset of N ⊆ M is called the submodule of M generated by S. If N = M we say that M is
generated by S. M is finitely generated :⇐⇒ ∃ S ⊆M finite such that M is generated by S.

Definition 1.2 (Noetherian R-module). M is a Noetherian R-module if the following equivalent conditions
hold:

1. Every submodule N ⊆M is finitely generated.

2. Every sequence N0 ⊂ N1 ⊂ . . . of submodules terminates

3. Every set M ̸= ∅ of submodules of M has a ⊆-largest element.

Proposition 1.3 (Hilbert’s Basissatz). If R is a Noetherian ring, then the polynomial rings R[X1, . . . , Xn]
in finitely many variables are Noetherian.

1.1.1 Properties of finite generation and Noetherianness

Fact (Properties of Noetherian modules). 1. Every Noetherian module over an arbitrary ring is finitely
generated.

2. If R is a Noetherian ring, then an R-module is Noetherian iff it is finitely generated.

3. Every submodule of a Noetherian module is Noetherian.

Proof. 1. By definition, M is a submodule of itself. Thus it is finitely generated.

2. Since M is finitely generated, there exists a surjective homomorphism Rn →M . As R is Noetherian, Rn

is Noethrian as well.

3. trivial

Fact. Let M,M ′,M ′′ be R-modules.

1. Suppose M
p−→M ′′ is surjective. If M is finitely generated (resp. Noetherian), then so is M ′′.

2. Let M ′ f−→ M
p−→ M ′′ → 0 be exact. If M ′ and M ′′ are finitely generated (reps. Noetherian), so is

M .

Proof. 1. Consider a sequence M ′′
0 ⊂M ′′

1 ⊂ . . . ⊂M ′′. Then p−1M ′′
i yields a strictly ascending sequence. If

M is generated by S, |S| < ω, then M ′′ is generated by p(S).

2. Because of 1. we can replace M ′ by f(M ′) and assume 0→ M ′ f−→ M
p−→ M ′′ → 0 to be exact. The fact

about finite generation follows from Einführung in die Algebra.

If M ′,M ′′ are Noetherian, N ⊆ M a submodule, then N ′ := f−1(N) and N ′′ := p(N) are finitely
generated. Since 0→ N ′ → N → N ′′ → 0 is exact, N is finitely generated.
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Algebra 1

1.2 Ring extensions of finite type

Definition 1.4 (R-algebra). Let R be a ring. An R-algebra (A,α) is a ring A with a ring homomorphism
R

α−→ A. α will usually be omitted. In general α is not assumed to be injective.

An R-subalgebra is a subring α(R) ⊆ A′ ⊆ A.
A morphism of R-algebras A

f−→ Ã is a ring homomorphism with α̃ = fα.

Definition 1.5 (Generated (sub)algebra, algebra of finite type). Let (A,α) be an R-algebra.

α : R[X1, . . . , Xm] −→ A[X1, . . . , Xm]

P =
∑

β∈Nm

pβX
β 7−→

∑
β∈Nm

α(pβ)X
β

is a ring homomorphism. We will sometimes write P (a1, . . . , am) instead of (α(P ))(a1, . . . , am).
Fix a1, . . . , am ∈ Am. Then we get a ring homomorphism R[X1, . . . , Xm] → A. The image of this ring

homomorphism is the R-subalgebra of A generated by the ai. A is of finite type if it can be generated
by finitely many ai ∈ I.

For arbitrary S ⊆ A the subalgebra generated by S is the intersection of all subalgebras containing S
= the union of subalgebras generated by finite S′ ⊆ S
= the image of R[Xs|s ∈ S] under P 7→ (α(P ))(S).

1.3 Finite ring extensions

Definition 1.6 (Finite ring extension). Let R be a ring and A an R-algebra. A is a module over itself and
the ringhomomorphism R→ A allows us to derive an R-module structure on A. A is finite over R / the
R-algebra A is finite / A/R is finite if A is finitely generated as an R-module.

Fact (Basic properties of finiteness). A Every ring is finite over itself.

B A field extension is finite as a ring extension iff it is finite as a field extension.

C A finite =⇒ A of finite type.

D A/R and B/A finite =⇒ B/R finite.

Proof. A 1 generates R as a module

B trivial

C Let A be generated by a1, . . . , an as an R-module. Then A is generated by a1, . . . , an as an R-algebra.

D Let A be generated by a1, . . . , am as an R-module and B by b1, . . . , bn as an A-module. For every
b there exist αj ∈ A such that b =

∑n
j=1 αjbj . We have αj =

∑m
i=1 ρijai for some ρij ∈ R thus

b =
∑m

i=1

∑n
j=1 ρijaibj and the aibj generate B as an R-module.

1.4 Determinants and Caley-Hamilton
This generalizes some facts about matrices to matrices with elements from commutative rings with 1. 1

Definition 1.7 (Determinant). Let A = (aij)Mat(n, n,R). We define the determinant by the Leibniz
formula

det(A) :=
∑
π∈Sn

sgn(π)
n∏

i=1

ai,π(i)

Define Adj(A) by Adj(A)Tij := (−1)i+j ·Mij , where Mij is the determinant of the matrix resulting from

1Most of this even works in commutative rings without 1, since 1 simply can be adjoined.
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A after deleting the ith row and the jth column.

Fact. 1. det(AB) = det(A) det(B)

2. Development along a row or column works.

3. Cramer’s rule: A ·Adj(A) = Adj(A) ·A = det(A) · 1n. A is invertible iff det(A) is a unit.

4. Caley-Hamilton: If PA = det(T · 1n −A) a, then PA(A) = 0.
aT · 1n −A ∈ Mat(n, n,A[T ])

Proof. All rules hold for the image of a matrix under a ring homomorphism if they hold for the original matrix.
The converse holds in the case of injective ring homomorphisms. Caley-Hamilton was shown for algebraically
closed fields in LA2 using the Jordan normal form. Fields can be embedded into their algebraic closure, thus
Caley-Hamilton holds for fields. Every domain can be embedded in its field of quotients =⇒ Caley-Hamilton
holds for domains.

In general, A is the image of (Xi,j)
n
i,j=1 ∈ Mat(n, n, S) where S := Z[Xi,j |1 ≤ i, j ≤ n] (this is a domain)

under the morphism S → A of evaluation defined by Xi,j 7→ ai,j . Thus Caley-Hamilton holds in general.

1.5 Integral elements and integral ring extensions

Proposition 1.8 (on integral elements). Let A be an R-algebra, a ∈ A. Then the following are equivalent:

A ∃ n ∈ N, (ri)n−1
i=0 , ri ∈ R : an =

∑n−1
i=0 ria

i

B There exists a subalgebra B ⊆ A finite over R and containing a.

If a1, . . . , ak ∈ A satisfy these conditions, there is a subalgebra of A finite over R and containing all ai.

Definition 1.9. Elements that satisfy the conditions from 1.8 are called integral over R. A/R is integral,
if all a ∈ A are integral over R. The set of elements of A integral over R is called the integral closure of
R in A.

Proof.

B =⇒ A Let a ∈ A such that there is a subalgebra B ⊆ A containing a and finite over R. Let (bi)
n
i=1 generate B

as an R-module.

q : Rn −→ B

(r1, . . . , rn) 7−→
n∑

i=1

ribi

is surjective. Thus there are ρi = (ri,j)
n
j=1 ∈ Rn such that abi = q(ρi). Let A be the matrix with the ρi as

columns. Then for all v ∈ Rn : q(A ·v) = a ·q(v). By induction it follows that q(P (A) ·v) = P (a)q(v) for all
P ∈ R[T ]. Applying this to P (T ) = det(T · 1n −A) and using Caley-Hamilton, we obtain P (a) · q(v) = 0.
P is monic. Since q is surjective, we find v ∈ Rn : q(v) = 1. Thus P (a) = 0 and a satisfies A.

B =⇒ A if R is Noetherian.2 Let a ∈ A satisfy B. Let B be a subalgebra of A containing b and finite over R. Let
Mn ⊆ B be the R-submodule generated by the ai with 0 ≤ i < n. As a finitely generated module over
the Noetherian ring R, B is a Noetherian R-module. Thus the ascending sequence Mn stabilizes at some
step d and ad ∈Md. Thus there are (ri)

d−1
i=0 ∈ Rd such that ad =

∑d−1
i=0 ria

i.

A =⇒ B Let a = (ai)
n
i=1 where all ai satisfy A, i.e. adi

i =
∑di−1

j=0 ri,ja
j
i with ri,j ∈ R. Let B ⊆ A be the

sub-R-module generated by aα =
∏n

i=1 a
αi
i with 0 ≤ αi < di. B is closed under a1· since

a1a
α =

{
a(α1+1,α′) if α = (α1, α

′), 0 ≤ α1 < d1 − 1∑d1−1
j=0 ri1,ja

(j,α′) if α1 = d1 − 1

2This suffices in the exam.
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By symmetry, this hold for all ai. By induction on |α| =
∑n

i=1 αi, B is invariant under aα·. Since these
generate B as an R-module, B is multiplicatively closed. Thus A holds. Furthermore we have shown the
final assertion of the proposition.

Corollary 1.10. Q Every finite R-algebra A is integral.

R The integral closure of R in A is an R-subalgebra of A

S If A is an R-algebra, B an A-algebra and b ∈ B integral over R, then it is integral over A.

T If A is an integral R-algebra and B any A-algebra, b ∈ B integral over A, then b is integral over R.

Proof. Q Put B = A in B.

R For every r ∈ R α(r) is a solution to T − r = 0, hence integral over R. From B it follows, that the integral
closure is closed under ring operations.

S trivial

T Let b ∈ B such that bn =
∑n−1

i=0 aib
i. Then there is a subalgebra Ã ⊆ A finite over R, such that all ai ∈ Ã.

b is integral over Ã =⇒ ∃ B̃ ⊆ B finite over Ã and b ∈ B̃. Since B̃/Ã and Ã/R are finite, B̃/R is finite
and b satisfies B.

1.6 Finiteness, finite generation and integrality

Fact (Finite type and integral =⇒ finite). If A is an integral R-algebra of finite type, then it is a finite
R-algebra.

Proof. Let A be generated by (ai)
n
i=1 as an R- algebra. By the proposition on integral elements (1.8), there is a

finite R-algebra B ⊆ A such that all ai ∈ B. We have B = A, as A is generated by the ai as an R-algebra.

Fact (Finite type in tower). If A is an R-algebra of finite type and B an A-algebra of finite type, then B
is an R-algebra of finite type.

Proof. If A/R is generated by (ai)
m
i=1 and B/A by (bj)

n
j=1, then B/R is generated by the bj and the images of

the ai in B.

Fact (About integrality and fields). Let B be a domain integral over its subring A. Then B is a field iff
A is a field.

Proof. Let B be a field and a ∈ A \ {0}. Then a−1 ∈ B is integral over A, hence a−d =
∑d−1

i=0 αia
−i for some

αi ∈ A. Multiplication by ad−1 yields a−1 =
∑d−1

i=0 αia
d−1−i ∈ A.

On the other hand, let B be integral over the field A. Let b ∈ B \ {0}. As B is integral over A, there is a
sub-A-algebra B̃ ⊆ B, b ∈ B̃ finitely generated as an A-module, i.e. a finite-dimensional A-vector space. Since
B is a domain, B̃ b·−→ B̃ is injective, hence surjective, thus ∃ x ∈ B̃ : b · x · 1.

1.7 Noether normalization theorem

Lemma 1.11. Let S ⊆ Nn be finite. Then there exists k⃗ ∈ Nn such that k1 = 1 and wk⃗(α) ̸= wk⃗(β) for
α ̸= β ∈ S, where wk⃗(α) =

∑n
i=1 kiαi.

Proof. Intuitive: For α ̸= β the equation w(1,κ⃗)(α) = w(1,κ⃗)(β) (κ ∈ Rn−1) defines a codimension 1 affine
hyperplane in Rn−1. It is possible to choose κ such that all κi are > 1

2 and with Euclidean distance >
√
n−1
2

from the union of these hyperplanes. By choosing the closest κ′ with integral coordinates, each coordinate will
be disturbed by at most 1

2 , thus at Euclidean distance ≤
√
n−1
2 .
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More formally:3 Define M := max{αi|α ∈ S, 1 ≤ i ≤ n}. We can choose k such that ki > (i − 1)Mki−1.
Suppose α ̸= β. Let i be the maximal index such that αi ̸= βi. Then the contributions of αj (resp. βj) with
1 ≤ j < i to wk⃗(α) (resp. wk⃗(β)) cannot undo the difference ki(αi − βi).

Theorem 1.12 (Noether normalization). Let K be a field and A a K-algebra of finite type. Then there
are a = (ai)

n
i=1 ∈ A which are algebraically independent over K, i.e. the ring homomorphism

eva : K[X1, . . . , Xn] −→ A

P 7−→ P (a1, . . . , an)

is injective. n and the ai can be chosen such that A is finite over the image of eva.

Proof. Let (ai)
n
i=1 be a minimal number of elements such that A is integral over its K-subalgebra generated

by a1, . . . , an. (Such ai exist, since A is of finite type). Let Ã be the K-subalgebra generated by the ai. If
suffices to show that the ai are algebraically independent. Since A is of finite type over K and thus over Ã,
by fact (integral and finite type =⇒ finite) A is finite over Ã. Thus we only need to show that the ai are
algebraically independent over K. Assume there is P ∈ K[X1, . . . , Xn] \ {0} such that P (a1, . . . , an) = 0. Let
P =

∑
α∈Nn pαX

α and S = {α ∈ Nn|pα ̸= 0}. For k⃗ = (ki)
n
i=1 ∈ Nn and α ∈ Nn we define wk⃗(α) :=

∑n
i=1 kiαi.

By 1.11 it is possible to choose k⃗ ∈ Nn such that k1 = 1 and for α ̸= β ∈ S we have wk⃗(α) ̸= wk⃗(β).
Define bi := ai+1 − a

ki+1

1 for 1 ≤ i < n. A is integral over the subalgebra B generated by the bi. By
the transitivity of integrality, it is sufficient to show that the ai are integral over B. For i > 1 we have
ai = bi−1 + aki

1 . Thus it suffices to show this for a1. Define Q(T ) := P (T, b1 +T k2 , . . . , bn−1 +T kn) ∈ B[T ]. We
have 0 = P (a1, . . . , an) = Q(a1). Hence it suffices to show that the leading coefficient of Q is a unit.

We have

Tα1

n−1∏
i=1

(bi + T ki+1)αi+1 = Tw
k⃗
(α) +

w
k⃗
(α)−1∑
l=0

βα,lT
l

with suitable βα,l ∈ B.
By the choice of k⃗, we have

Q(T ) = pαT
w

k⃗
(α) +

w
k⃗
(α)−1∑
j=0

qjT
j

with qj ∈ B and α such that wk⃗(α) is maximal subject to the condition pα ̸= 0. Thus the leading coefficient of
Q is a unit.

This contradicts the minimality of n, as B can be generated by < n elements bi.

2 The Nullstellensatz and the Zariski topology

2.1 The Nullstellensatz
Let k be a field, R := k[X1, . . . , Xn], I ⊆ R an ideal.

Definition 2.1 (zero). x ∈ kn is a zero of I if ∀ x ∈ I : P (x) = 0. Let VA(I) denote the set of zeros if I
in kn.

The zero in a field extension i of k is defined similarly.

Remark (Set of zeros and generators). Let I be generated by S. Then {x ∈ R|∀ s ∈ S : s(x) = 0} = VA(I).
Thus zero sets of ideals correspond to solutions sets to systems of polynomial equations. If S, S̃ generate
the same ideal I they have the same set of solutions. Therefore we only consider zero sets of ideals.

Theorem 2.2 (Hilbert’s Nullstellensatz (1)). If k is algebraically closed and I ⊊ R a proper ideal, then I
has a zero in kn.

3The intuitive version suffices in the exam.
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Remark. Will be shown later (see proof of 2.4). Trivial if n = 1: R is a PID, thus I = pR for some p ∈ R.
Since I ̸= R p = 0 or P is non-constant. k algebraically closed ⇝ there exists a zero of p.

If k is not algebraically closed and n > 0, the theorem fails (consider I = p(X1)R).

Equivalent4 formulation:

Theorem 2.3 (Hilbert’s Nullstellensatz (2)). Let L/K be an arbitrary field extension. Then L/K is a
finite field extension (dimK L <∞) iff L is a K-algebra of finite type.

Proof. =⇒ If (li)mi=1 is a base of L as a K-vector space, then L is generated by the li as a K-algebra.

⇐= Apply the Noether normalization theorem (1.12) to A = L. This yields an injective ring homomorphism
eva : K[X1, . . . , Xn] → A such that A is finite over the image of eva. By the fact about integrality and
fields (), the isomorphic image of eva is a field. Thus K[X1, . . . , Xn] is a field =⇒ n = 0. Thus L/K is
a finite ring extension, hence a finite field extension.

Remark. We will see several additional proofs of this theorem. See 2.6 and 2.36. All will be accepted in
the exam.

2.12 and 3.12 are closely related.

Theorem 2.4 (Hilbert’s Nullstellensatz (1b)). Let l be a field and I ⊂ R = l[X1, . . . , Xm] a proper ideal.
Then there are a finite field extension i of l and a zero of I in im.

Proof. (HNS2 (2.3) =⇒ HNS1b (2.4)) I ⊆ m for some maximal ideal. R/m is a field, since m is maximal. R/m
is of finite type, since the images of the Xi generate it as a l-algebra. There are thus a field extension i/l and
an isomorphism R/m

ι−→ i of l-algebras. By HNS2 (2.3), i/l is a finite field extension. Let xi := ι(Xi mod m).

P (x1, . . . , xm) = ι(P mod m)

Both sides are morphisms R→ i of l-algebras. For for P = Xi the equality is trivial. It follows in general, since
the Xi generate R as a l-algebra.

Thus (x1, . . . , xm) is a zero of I (since P mod m = 0 for P ∈ I ⊆ m). HNS1 (2.2) can easily be derived from
HNS1b.

2.1.1 Nullstellensatz for uncountable fields

The following proof of the Nullstellensatz only works for uncountable fields, but will be accepted in the exam.

Lemma 2.5. If K is an uncountable field, then dimK K(T ) is uncountable.

Proof. We will show, that S :=
{

1
T−κ |κ ∈ K

}
is K-linearly independent. It follows that dimK K(T ) ≥ #S > ℵ0.

Suppose (xκ)κ∈K is a selection of coefficients from K such that I := {κ ∈ K|xκ ̸= 0} is finite and

g :=
∑
κ∈K

xκ

T − κ
= 0

Let d :=
∏

κ∈I(T − κ). Then for λ ∈ I we have

0 = (dg)(λ) = xλ

∏
κ∈I\{λ}

(λ− κ)

This is a contradiction as xλ ̸= 0.

4used in a vague sense here
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Theorem 2.6 (Hilbert’s Nullstellensatz for uncountable fields). If K is an uncountable field and L/K a
field extension and L of finite type as a K-algebra, then this field extension is finite.

Proof. If (xi)
n
i=1 generate L as an K-algebra, then the countably many monomials xα =

∏n
i=1 x

αi
i in the xi

with α ∈ Nn generate L as a K-vector space. Thus dimK L ≤ ℵ0 and the same holds for any intermediate field
K ⊆ M ⊆ L . If l ∈ L is transcendent over K and M = K(l), then M ∼= K(T ) has uncountable dimension by
2.5. Thus L/K is algebraic, hence integral, hence finite ().

2.2 The Zariski topology
2.2.1 Operations on ideals and VA (I)

Let R be a ring and I, J, Iλ ⊆ R ideals, λ ∈ Λ.

Definition 2.7 (Radical, product and sum of ideals).

√
I :=

∞⋂
n=0

{f ∈ R|fn ∈ I}

I · J := ⟨{i · j|i ∈ I, j ∈ J}⟩R

∑
λ∈Λ

Iλ :=

{∑
λ∈Λ′

iλ|Λ′ ⊆ Λ finite

}

Fact. The radical is an ideal in R and
√√

I =
√
I.

I · J is an ideal.∑
λ∈Λ Iλ coincides with the ideal generated by

⋂
λ∈Λ Iλ in R.⋂

λ∈Λ Iλ is an ideal.

Let R = k[X1, . . . , Xn] where k is an algebraically closed field.

Fact. Let I, J, (Iλ)λ∈Λ be ideals in R. Λ may be infinite.

A VA(I) = VA(
√
I)

B
√
J ⊆
√
I =⇒ VA(I) ⊆ VA(J)

C VA(R) = ∅, VA({0} = kn

D VA(I ∩ J) = VA(I · J) = VA(I) ∪ VA(J)

E VA(
∑

λ∈Λ Iλ) =
⋂

λ∈Λ VA(Iλ)

Proof. A-C trivial

D I ·J ⊆ I ∩J ⊆ I. Thus VA(I) ⊆ VA(I ∩J) ⊆ VA(I ·J). By symmetry we have VA(I)∪VA(J) ⊆ VA(I ∩J) ⊆
VA(I · J). Let x ̸∈ VA(I) ∪ VA(J). Then there are f ∈ I, g ∈ J such that f(x) ̸= 0, g(x) ̸= 0 thus
(f · g)(x) ̸= 0 =⇒ x ̸∈ VA(I · J). Therefore

VA(I) ∪ VA(J) ⊆ VA(I ∩ J) ⊆ VA(I · J) ⊆ VA(I) ∪ VA(J)

E Iλ ⊆
∑

λ∈Λ Iλ =⇒ VA(
∑

λ∈Λ Iλ) ⊆ VA(Iλ). Thus VA(
∑

λ∈Λ Iλ) ⊆
⋂

λ∈Λ VA(Iλ). On the other hand
if f ∈

∑
λ∈Λ Iλ we have f =

∑
λ∈Λ fλ. Thus f vanishes on

⋂
λ∈Λ VA(Iλ) and we have

⋂
λ∈Λ VA(Iλ) ⊆

VA(
∑

λ∈Λ Iλ).

Remark. There is no similar way to describe VA(
⋂

λ∈Λ Iλ) in terms of the VA(Iλ) when Λ is infinite. For
instance if n = 1, Ik := Xk

1R then
⋂∞

k=0 Ik = {0} but
⋃∞

k=0 VA(Ik) = {0}.
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2.2.2 Definition of the Zariski topology

Let k be algebraically closed, R = k[X1, . . . , Xn].

Corollary 2.8. (of ) There is a topology on kn for which the set of closed sets coincides with the set A of
subsets of the form VA (I) for ideals I ⊆ R. This topology is called the Zariski-Topology

Example. Let n = 1. Then R is a PID. Hence every ideal is a principal ideal and the Zariski-closed
subsets of k are the subsets of the form VA(P ) for P ∈ R. As VA(0) = k and VA(P ) finite for P ̸= 0 and
{x1, . . . , xn} = VA(

∏n
i=1(T − xi)) the Zariski-closed subsets of k are k and the finite subsets. Because k is

infinite, this topology is not Hausdorff.

2.2.3 Separation properties of topological spaces

Definition 2.9. Let X be a topological space. X satisfies the separation properties T0−2 if for any
x ̸= y ∈ X

T0 ∃ U ⊆ X open such that |U ∩ {x, y}| = 1

T1 ∃ U ⊆ X open such that x ∈ U, y ̸∈ U .

T2 There are disjoined open sets U, V ⊆ X such that x ∈ U, y ∈ V . (Hausdorff)

Remark. Let x ∼ y : ⇐⇒ the open subsets of X containing x are precisely the open subsets of X
containing y. Then T0 holds iff x ∼ y =⇒ x = y.

Fact. T0 ⇐⇒ every point is closed.

Fact. The Zariski topology on kn is T1 but for n ≥ 1 not Hausdorff. For n ≥ 1 the intersection of two
non-empty open subsets of kn is always non-empty.

Proof. {x} is closed, as {x} = V (⟨X1 − x1, . . . , Xn − xn⟩R). If A = V (I), B = V (J) are two proper closed
subsets of kn then I ̸= {0}, J ̸= {0} and thus IJ ̸= {0}. Therefore A ∪ B = V (IJ) is a proper closed subset of
kn.

2.2.4 Compactness properties of topological spaces

Let X be a topological space.

Definition 2.10 (Compact, quasi-compact). X is called quasi-compact if every open covering of X has
a finite subcovering. It is called compact, if it is quasi-compact and Hausdorff.

Definition 2.11 (Noetherian topological spaces). X is called Noetherian, if the following equivalent
conditions hold:

A Every open subset of X is quasi-compact.

B Every descending sequence A0 ⊇ A1 ⊇ . . . of closed subsets of X stabilizes.

C Every non-empty set M of closed subsets of X has a ⊆-minimal element.

Proof.

A =⇒ B Let Aj be a descending chain of closed subsets. Define A :=
⋂∞

j=0 Aj . If A holds, the covering X \ A =⋃∞
j=0(X \Aj) has a finite subcovering.
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B =⇒ C Suppose M does not have a ⊆-minimal element. Using DC, one can construct a counterexample A1 ⊊
A2 ⊋ . . . to B.

C =⇒ A Let
⋃

i∈I Vi be an open covering of an open subset U ⊆ X. By C, the setM := {X \
⋃

i∈F Vi|F ⊆ I finite}
has a ⊆-minimal element.

2.3 Another form of the Nullstellensatz and Noetherianness of kn

Let k be algebraically closed, R = k[X1, . . . , Xn]. For f ∈ R let V (f) = V (fR).

Theorem 2.12 (Hilbert’s Nullstellensatz (3)). Let I ⊆ R be an ideal. Then V (I) ⊆ V (f) iff f ∈
√
I.

Proof. Suppose f vanishes on all zeros of I. Let R′ := k[X1, . . . , Xn, T ], g(X1, . . . , Xn, T ) := 1−T ·f(X1, . . . , Xn)
and J ⊆ R′ the ideal generated by g and the elements of I (viewed as elements of R′ which are constant in the
T -direction).

If f vanishes on all zeros of I, then J has no zeros in kn+1.
Thus there exist pi ∈ I, i = 1, . . . , n, qi ∈ k[X1, . . . , Xn, T ], i = 1, . . . , n and q ∈ k[X1, . . . , Xn, T ] such that

1 = g · q +
n∑

i=1

piqi

Formally substituting 1
f(x1,...,xn)

for Y , one obtains:

1 =

n∑
i=1

pi (x1, . . . , xn) qi

(
x1, . . . , xn,

1

f(x1, . . . , xn)

)
Multiplying by a sufficient power of f , this yields an equation in R :

fd =

n∑
i=1

pi(x1, . . . ,n ) · q′i(x1, . . . , xn) ∈ I

Thus f ∈
√
I.

Corollary 2.13.

f : {I ⊆ R|I ideal, I =
√
I} −→ {A ⊆ kn|A Zariski-closed}
I 7−→ V (I)

{f ∈ R|A ⊆ V (f)} ←− [ A

is a ⊆-antimonotonic bijection.

Corollary 2.14. The topological space kn is Noetherian.

Proof. Because the map from 2.13 is antimonotonic, strictly decreasing chains of closed subsets of kn are mapped
to strictly increasing chains of ideals in R. By the Basissatz (1.3), R is Noetherian.

2.4 Irreducible spaces
Let X be a topological space.

Definition 2.15. X is called irreducible, if X ̸= ∅ and the following equivalent conditions hold:

A Every open ∅ ≠ U ⊆ X is dense.

B The intersection of non-empty, open subsets U, V ⊆ X is non-empty.

C If A,B ⊆ X are closed, X = A ∪B then X = A or X = B.
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D Every open subset of X is connected.

Proof.

A ⇐⇒ B by definition of denseness.

B ⇐⇒ C Let U := X \A, V := X \B.

B =⇒ D Suppose W is a non-connected open subset. Then there exists a decomposition W = U ∪ V into disjoint
open subsets.

D =⇒ B If U, V ̸= ∅ are disjoint open subsets, then U ∪ V is non-connected.

Corollary 2.16. Every irreducible topological space is connected.

Example. kn is irreducible as shown in .

Fact. A A single point is always irreducible.

B If X is Hausdorff then it is irreducible iff it has precisely one point.

C X is irreducible iff it cannot be written as a finite union of proper closed subsets.

D X is irreducible iff any finite intersection of non-empty open subsets is non-empty. (
⋂
∅ := X)

Proof. A,B trivial

C =⇒ : Induction on the cardinality of the union. ⇐= :
⋂
∅ = X is non-empty and any intersection of

two non-empty open subsets is non-empty.

D Follows from C.

2.4.1 Irreducible components

Fact. If D ⊆ X is dense, then X is irreducible iff D is irreducible with its induced topology.

Proof. X = ∅ iff D = ∅. Suppose B is the union of its proper closed subsets A,B. Then X = A∪B. These are
proper closed subsets of X, as A ∩D = A ∩D (by closedness of D) and thus A ∩D ̸= D.

On the other hand, if U and V are disjoint non-empty open subsets of X, then U ∩D and V ∩D are disjoint
non-empty open subsets of D.

Definition 2.17 (Irreducible subsets). A subset Z ⊆ X is called irreducible if it is irreducible with its
induced topology. Z is called an irreducible component of X, if it is irreducible and if every irreducible
subset Z ⊆ Y ⊆ X coincides with Z.

Corollary 2.18. 1. Z ⊆ X is irreducible iff Z ⊆ X is irreducible.

2. Every irreducible component of X is a closed subset of X.

Notation 2.19. From now on, irreducible means irreducible and closed.

2.4.2 Decomposition into irreducible subsets
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Proposition 2.20. Let X be a Noetherian topological space. Then X can be written as a finite union
X =

⋃n
i=1 Zi of irreducible closed subsets of X. One may additionally assume that i ̸= j =⇒ Zi ̸⊆ Zi.

With this minimality condition, n and the Zi are unique (up to permutation) and {Z1, . . . , Zn} is the set
of irreducible components of X.

Proof. Let M be the set of closed subsets of X which cannot be decomposed as a union of finitely many
irreducible subsets. Suppose M ̸= ∅. Then there exists a ⊆-minimal Y ∈M. Y cannot be empty or irreducible.
Hence Y = A∪B where A,B are proper closed subsets of Y . By the minimality of Y , A and B can be written
as a union of proper closed subsets  .

Let X =
⋃n

i=1 Zi, where there are no inclusions between the Zi. If Y is an irreducible subsets of X,
Y =

⋃n
i=1(Y ∩Zi) and there exists 1 ≤ i ≤ n such that Y = Y ∩Zi. Hence Y ⊆ Zi. Thus the Zi are irreducible

components. Conversely, if Y is an irreducible component of X, Y ⊆ Zi for some i and Y = Zi by the definition
of irreducible component.

Remark. The proof of existence was an example of Noetherian induction : If E is an assertion about
closed subsets of a Noetherian topological space X and E holds for A if it holds for all proper subsets of
A, then E(A) holds for every closed subset A ⊆ X.

Proposition 2.21. By 2.13 there exists a bijection

f : {I ⊆ R|I ideal, I =
√
I} −→ {A ⊆ kn|A Zariski-closed}
I 7−→ V (I)

{f ∈ R|A ⊆ V (f)} ←− [ A

Under this correspondence A ⊆ kn is irreducible iff I := f−1(A) is a prime ideal. Moreover, #A = 1 iff
I is a maximal ideal.

Proof. By the Nullstellensatz (2.2), A = ∅ ⇐⇒ I = R. Suppose A = B ∪ C is a decomposition into
proper closed subsets A = V (J), B = V (K) where J =

√
J.K =

√
K. Since A ̸= B and A ̸= C, there are

f ∈ J \ I, g ∈ K \ I. fg vanishes on A = B ∪ C. By the Nullstellensatz (2.12) fg ∈
√
I = I and I fails to be

prime.
On the other hand suppose that fg ∈ I, f /∈ I, g ̸∈ I. By the Nullstellensatz (2.12) and I =

√
I neither f nor

g vanishes on all of A. Thus (A ∩ V (f)) ∪ (A ∩ V (g)) is a decomposition and A fails to be irreducible.
The remaining assertion follows from the fact, that the bijection is ⊆-antimonotonic and thus maximal ideals

correspond to minimal irreducible closed subsets, which are the one-point subsets as kn is T1.

2.5 Krull dimension

Definition 2.22. Let Z be an irreducible subset of the topological space X. Let codim(Z,X) be the
maximum of the length n of strictly increasing chains Z ⊆ Z0 ⊊ Z1 ⊊ . . . ⊊ Zn of irreducible closed
subsets of X containing Z or ∞ if such chains can be found for arbitrary n. Let

dimX :=

{
−∞ if X = ∅
sup Z⊆X

Z irreducible
codim(Z,X) otherwise

Remark. • In the situation of the definition Z is irreducible. Hence codim(Z,X) is well-defined and
one may assume without losing much generality that Z is closed.

• Because a point is always irreducible, every non-empty topological space has an irreducible subset
and for X ̸= ∅, dimX is ∞ or maxx∈X codim({x}, X).

• Even for Noetherian X, it may happen that codim(Z,X) =∞.

• Even for if X is Noetherian and codim(Z,X) is finite for all irreducible subsets Z of X, dimX may
be infinite.
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Fact. If X = {x}, then dimX = 0.

Fact. For every x ∈ k, codim({x}, k) = 1. The only other irreducible closed subset of k is k itself, which
has codimension zero. Thus dim k = 1.

Fact. Let Y ⊆ X be irreducible and U ⊆ X an open subset such that U ∩Y ̸= ∅. Then we have a bijection

f : {A ⊆ X|A irreducible, closed and Y ⊆ A} −→ {B ⊆ U |B irreducible, closed and Y ∩ U ⊆ B}
A 7−→ A ∩ U

B ←− [ B

where B denotes the closure in X.

Proof. If A is given and B = A ∩ U , then B ̸= ∅ and B is open hence (irreducibility of A) dense in A, hence
A = B. The fact that B = B ∩ U is a general property of the closure operator.

Corollary 2.23 (Locality of Krull codimension). Let Y ⊆ X be irreducible and U ⊆ X an open subset
such that U ∩ Y ̸= ∅. Then codim(Y,X) = codim(Y ∩ U,U).

Fact. Let Z ⊆ Y ⊆ X be irreducible closed subsets of the topological space X. Then

codim(Z, Y ) + codim(Y,X) ≤ codim(Z,X) (CD+)q : cdp

Proof. A chain of irreducible closed subsets between Z and Y and a chain of irreducible closed between Y and
X can be spliced together.

Taking the supremum over all Z we obtain:

Fact. If Y is an irreducible closed subset of the topological space X, then

dim(Y ) + codim(Y,X) ≤ dim(X) (D+)q : dp

In general, these inequalities may be strict.

Definition 2.24 (Catenary topological spaces). A topological space T is called catenary if equality holds
in (??) whenever X is an irreducible closed subset of T .

2.5.1 Krull dimension of kn

Theorem 2.25. dim kn = n and kn is catenary. Moreover, if X is an irreducible closed subset of kn, then
equality occurs in (??).

Proof. Considering
{0} ⊊ k× {0} ⊊ k2 × {0} ⊊ . . . ⊊ kn

it is clear that codim({0}, kn) ≥ n.Translation by x ∈ kn gives us codim({x}, kn) ≥ n.
The opposite inequality follows from 2.51 (Z = kn dim kn ≤ trdeg(K(Z)/k) = trdeg(Q(k[X1, . . . , Xn])/k) = n).
The theorem is a special case of 2.68.

Lemma 2.26. Every non-zero prime ideal p of a UFD R contains a prime element.

Proof. Let p ∈ p \ {0} with the minimal number of prime factors, counted by multiplicity. If p was a unit,
then p ⊇ pR = R. If p = ab with non-units a, b, it follows that a ∈ p or b ∈ p contradicting the minimality
assumption. Thus p is a prime element of R.
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Proposition 2.27 (Irreducible subsets of codimension one). Let p ∈ R = k[X1, . . . , Xn] be a prime element.
Then the irreducible subset X = V (p) ⊆ kn has codimension one, and every codimension one subset of kn
has this form.

Proof. Since pR is a prime ideal, X = V (p) is irreducible. Since p ̸= 0, X is a proper subset of kn. If X ⊆ Y ⊆ kn

is irreducible and closed, then Y = V (q) for some prime ideal p ⊆ pR. If Y ̸= kn, then p ̸= {0}. By 2.26 there
exists a prime element q ∈ q. As q ⊆ pR we have p | q. By the irreducibility of p and q it follows that p ∼ q.
Hence q = pR and X = Y .

Suppose X = V (p) ⊆ kn is closed, irreducible and of codimension one. Then p ̸= {0}, hence X ̸= kn. By 2.26
there is a prime element p ∈ p. If p ̸= pR, then X ⊊ V (p) ⊊ kn contradicts codim(X, kn) = 1.

2.6 Transcendence degree
2.6.1 Matroids

Definition 2.28 (Hull operator). aLet X be a set, P(X) the power set of X. A Hull operator on X is
a map P(X)

H−→ P(X) such that

H1 ∀ A ∈ P(X) A ⊆ H(A).

H2 A ⊆ B ⊆ X =⇒ H(A) ⊆ H(B).

H3 H(H(X)) = H(X).

We call H matroidal if in addition the following conditions hold:

M If m,n ∈ X and A ⊆ X then m ∈ H({n} ∪A) \ H(A) ⇐⇒ n ∈ H({m} ∪A) \ H(A).

F H(A) =
⋃

F⊆A finiteH(F ).

In this case, S ⊆ X is called Independent subset, if s ̸∈ H(S \ {s}) for all s ∈ S and generating if
X = H(S). S is called a base, if it is both generating and independent.
aNot relevant for the exam.

Theorem 2.29. If H is a matroidal hull operator on X, then a basis exists, every independent set is
contained in a base and two arbitrary bases have the same cardinality.

Example. Let K be a field, V a K-vector space and L(T ) the K-linear hull of T for T ⊆ V . Then L is a
matroidal hull operator on V .

2.6.2 Transcendence degree

Lemma 2.30. Let L/K be a field extension and let H(T ) be the algebraic closure in L of the subfield of
L generated by K and T .a Then H is a matroidal hull operator.
aThis is the intersection of all subfields of L containing K ∪ T , or the field of quotients of the sub-K-algebra of L generated

by T .

Proof. 5H1, H2 and F are trivial. For an algebraically closed subfield K ⊆ M ⊆ L we have H(M) = M . Thus
H(H(T )) = H(T ) (H3).

Let x, y ∈ L, T ⊆ L and x ∈ H(T ∪ {y}) \ H(T ). We have to show that y ∈ H(T ∪ {x}) \ H(T ). If y ∈ H(T )
we have H(T ∪{y}) ⊆ H(H(T )) = H(T ) =⇒ x ∈ H(T )\H(T ) . Hence it is sufficient to show y ∈ H(T ∪{x}).
W.l.o.g. T = ∅ (replace K be the subfield generated by K ∪ T ). Then x is algebraic over the subfield M of L
generated by K ∪ {y}. Thus there exists 0 ̸= P ∈ M [T ] with P (x) = 0. The coefficients pi of P belong to the
field of quotients of the K-subalgebra of L generated by y. There are thus polynomials Qi, R ∈ K[Y ] such that

5Not relevant for the exam.
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pi =
Qi(y)
R(y) , R(y) ̸= 0. Let

Q(X,Y ) :=

∞∑
i=0

XiQi(Y ) =

∞∑
i,j=0

qi,jX
iY j =

∞∑
j=0

Y jQ̂j(X) ∈ K[X,Y ]

. Then Q(x, y) = 0. Let p̂j := Q̂j(x). Then P̂ (y) = 0. As Q ̸= 0 there is (i, j) ∈ N2 such that qi,j ̸= 0 and
then p̂j ̸= 0 as x ̸∈ H(∅). Thus P̂ ∈ M̂ [X] \ {0}, where M̂ is the subfield of L generated by K and x. Thus y is
algebraic over M̂ and y ∈ H({x}),

Definition 2.31 (Transcendence Base). Let L/K be a field extension and H(T ) the algebraic closure in
L of the subfield generated by K and T . A base for (L,H) is called a transcendence base and the
transcendence degree trdeg(L/K) is defined as the cardinality of any transcendence base of L/K.

Remark. L/K is algebraic iff trdeg(L/K) = 0.

2.7 Inheritance of Noetherianness and of finite type by subrings and subalgebras /
Artin-Tate

The following will lead to another proof of the Nullstellensatz, which uses the transcendence degree.

Remark. There exist non-Noetherian domains, which are subrings of Noetherian domains (namely the
field of quotients is Noetherian).

Theorem 2.32 (Eakin-Nagata). Let A be a subring of the Noetherian ring B. If the ring extension B/A
is finite (i.e. B finitely generated as an A-module) then A is Noetherian.

Fact†. Let R be Noetherian and let B be a finite R-algebra. Then every R-subalgebra A ⊆ B is finite
over R.

Proof. Since B a finitely generated R-module and R a Noetherian ring, B is a Noetherian R-module (this is a
stronger assertion than Noetherian algebra). Thus the sub- R-module A is finitely generated.

Proposition 2.33 (Artin-Tate). Let A be a subalgebra of the R-algebra B, where R is Noetherian. If
B/R is of finite type and B/A is finite, then A/R is also of finite type.

A B

R (Noeth.)

⊆

α
α

Proof. Let (bi)
m
i=1 generate B as an A-module and (βj)

m
j=1 as an R-algebra. There are aijk ∈ A such that

bibj =
∑m

k=1 aijkbk. And αij ∈ A such that βi =
∑m

j=1 αijbj . Let Ã be the sub- R-algebra of A generated by
the aijk and αij . Ã is of finite type over R, hence Noetherian. The Ã-submodule generated by 1 and the bi is
a sub-R-algebra containing the βi and thus coincides with B. Hence B/Ã is finite. Since A ⊆ B,A/Ã is finite
(). Hence A/Ã is of finite type. By the transitivity of “of finite type”, it follows that A/R is of finite type.

Ã A B

R

⊆ ⊆

α
α

α
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2.7.1 Artin-Tate proof of the Nullstellensatz

Let K be a field and R = K[X1, . . . , Xn].

Definition 2.34 (Rational functions). Let K(X1, . . . , Xn) := Q(R) be the field of quotients of R.
K(X1, . . . , Xn) is called the field of rational functions in n variables over K.

Lemma 2.35 (Infinitely many prime elements). There are infinitely many multiplicative equivalence classes
of prime elements in R.

Proof. Suppose (Pi)
m
i=1 is a complete (up to multiplicative equvialence) lsit of prime elements of R. m > 0, as

X1 is prime. The polynomial f := 1 +
∏m

i=1 Pi is non-constant, hence not a unit in R. Hence there exists a
prime divisor P ∈ R. As no Pi divides f , P cannot be multiplicatively equivalent to any Pi .

Lemma 2.36 (Ring of rational functions not of finite type). If n > 0, then K(X1, . . . , Xn)/K is not of
finite type.

Proof. Suppose (fi)
m
i=1 generate K(X1, . . . , Xn) as a K-algebra. Let fi = ai

b , ai ∈ R, b ∈ R \{0}. Then bfi ∈ R,
and as the fi generate K(X1, . . . , Xn) as a K-algebra, for every g ∈ K(X1, . . . , Xn) there is N ∈ N with

bNg ∈ R (+)NginR

However, if b = ε
∏l

i=1 Pi is a decomposition of b into prime factors Pi and a unit ε in R and g = 1
P , wehere

P ∈ R is a prime element not multiplicatively equvalent to any Pi, then (??) fails for any N ∈ N.

The Nullstellensatz (2.3) can be reduced to the case of 2.36:

Proof. (Artin-Tate proof of HNS) Let (li)
n
i=1 be a transcendence base of L/K. If n = 0 then L/K is algebraic,

hence an integral ring extension, hence a finite ring extension ().
Suppose n > 0. Let R̃ ⊆ L be the K-subalgebra generated by the li. R̃ ∼= R := K[X1, . . . , Xn], as the li are

algebraically independent. As they are a transcendence base, L is algebraic over the field of quotients Q(R̃),
hence integral over Q(R̃).

As L/K is of finite type, so is L/Q(R̃) and it follows that L/Q(R̃) is a finite ring extension. By Artin-Tate
(2.33), Q(K̃) is of finite type over K. This contradicts 2.36, as R ∼= R̃ =⇒ K(X1, . . . , Xn) ∼= Q(R̃).

2.8 Transcendence degree and Krull dimension
Let R = k[X1, . . . , Xn].

Notation 2.37. Let X ⊆ kn be an irreducible closed subset. Then X = V (p) for a unique prime ideal
p ⊆ R. Let K(X) := Q(R/p) denote the field of quotients of R/p.

Remark. As the elements of p vanish on X, R/p may be viewed as the ring of polynomials and K(X) as
the field of rational functions on X.

Theorem 2.38. If X ⊆ kn is irreducible, then dimX = trdeg(k(X)/k) and codim(X, kn) = n−trdeg(K(X)/k).
More generally if Y ⊆ kn is irreducible and X ⊆ Y , then codim(X,Y ) = trdeg(K(Y )/k)− trdeg(K(X)/k).

Proof. One part will be shown in "A first result on dimension theory" (2.50) and other one in "Aplication to
dimension theory: Proof of dimY = trdeg(K(Y )/k)" (2.13.2). The theorem is a special case of 2.68.

Remark. Loosely speaking, the Krull dimension of X is equal to the maximal number of k-algebraically
independent rational functions on X. This is yet another indication that the notion of dimension is the
“correct” one.
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Remark. 2.25 follows.

2.9 The spectrum of a ring

Definition 2.39 (Spectrum). Let R be a commutative ring.

• Let SpecR denote the set of prime ideals and mSpecR ⊆ SpecR the set of maximal ideals of R.

• For an ideal I ⊆ R let V (I) := {p ∈ SpecR|I ⊆ p}

• We equip SpecR with the Zariski-Topology for which the closed subsets are the subsets of the
form V (I), where I runs over the set of ideals in R.

Remark. When R = k[X1, . . . , Xn], the notation V (I) clashes with the previous notation. When several
types of V (I) will be in use, they will be distinguished using indices.

Remark. Let (Iλ)λ∈Λ and (lj)
n
j=1 be ideals in R, where Λ may be infinite. We have V (

∑
λ∈Λ Iλ) =⋂

λ∈Λ V (Iλ) and V (
⋂n

j=1 Ij) = V (
∏n

j=1 Ij) =
⋃n

j=1 V (Ij). Thus, the Zariski topology on SpecR is a
topology.

Remark. Let R = k[X1, . . . , Xn]. Then there exists a bijection (2.13, 2.21) between SpecR and the set
of irreducible closed subsets of kn sending p ∈ SpecR to Vkn(p) and identifying the one-point subsets with
mSpecR. This defines a bijection kn ∼= mSpecR which is a homeomorphism if mSpecR is equipped with
the induced topology from the Zariski topology on SpecR.

2.10 Localization of rings

Definition 2.40 (Multiplicative subset). A multiplicative subset of a ring R is a subset S ⊆ R such
that

∏n
i=1 fi ∈ S when n ∈ N and all fi ∈ S.

Proposition 2.41. Let S ⊆ R be a multiplicative subset. Then there is a ring homomorphism R
i−→ RS

such that i(S) ⊆ R×
S and i has the universal property for such ring homomorphisms: If R j−→ T is a ring

homomorphism with j(S) ⊆ T×, then there is a unique ring homomorphism RS
ι−→ T with j = ιi.

R RS

T

i

j
∃! ι

Proof. The construction is similar to the construction of the field of quotients:
Let RS := (R × S)/ ∼, where (r, s) ∼ (ρ, σ) : ⇐⇒ ∃ t ∈ S tσr = tsρ.6 [r, s] + [ρ, σ] := [rσ + ρs, sσ],

[r, s] · [ρ, σ] := [r · ρ, s · σ].
In order proof the universal property define ι([r, s]) := j(r)

j(s) . The universal property characterizes RS up to
unique isomorphism.

Remark. i is often not injective and Ker(i) = {r ∈ R|∃ s ∈ S s · r = 0}. In particular (r = 1), RS is the
null ring iff 0 ∈ S.

6t does not appear in the construction of the field of quotients, but is important if S contains zero divisors.
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Notation 2.42. Let S ⊆ R be a multiplicative subset of R. We write r
s for [r, s]. The ring homomorphism

R
i−→ RS i given by i(r) = r

1 . For X ⊆ RS let X ⊓R denote i−1(X).

Definition 2.43 (S-saturated ideal). An ideal I ⊆ R is called S-saturated if for all s ∈ S, r ∈ R
rs ∈ I =⇒ r ∈ I.

Fact. A prime ideal p ⊆ SpecR is S-saturated iff p ∩ S = ∅.

Because the elements of S become units in RS , J ⊓R is an S-saturated ideal in R when J is an ideal in RS .

Fact. Let I ⊆ R be an S-saturated ideal and let IS denote the ideal { rs |r ∈ R, s ∈ S} ⊆ RS . Then for all
r ∈ R, s ∈ S we have r

s ∈ IS ⇐⇒ r ∈ I.

Proof. Clearly i ∈ I =⇒ i
s ∈ IS . If i

s ∈ J there are ι ∈ I, σ ∈ S such that i
s = ι

σ in RS . This equation holds
iff there exists t ∈ S such that tsι = tσi. But tsι ∈ I hence i ∈ I, as I is S-saturated.

Fact. The inverse image of a prime ideal under any ring homomorphism is a prime ideal.

Proposition 2.44.

f : {I ⊆ R|I S-saturated ideal} −→ {J ⊆ RS |J ideal}

I 7−→ IS :=

{
i

s
|i ∈ I, s ∈ S

}
J ⊓R←− [ J

is a bijection. Under this bijection I is a prime ideal iff f(I) is.

Proof. Applying to s = 1 gives IS ⊓R = I, when I is S-saturated.
Conversely, if J is given and I = J ⊓R, r

s ∈ RS , then by r
s ∈ IRS ⇐⇒ r ∈ I. But as r

1 = s · rs and s ∈ R×
S ,

we have r ∈ I ⇐⇒ r
1 ∈ J ⇐⇒ r

s ∈ J . We have thus shown that the two maps between sets of ideals are
well-defined and inverse to each other.

By , J ∈ SpecRS =⇒ f−1(J) = J ∩R ∈ SpecRS . Suppose I ∈ SpecR, a
s ·

b
t ∈ IS for some a, b ∈ R, s, t ∈ S.

By ab ∈ I. Thus a ∈ I ∨ b ∈ I, hence a
s ∈ IS ∨ b

t ∈ IS and we have IS ∈ SpecRS .

Remark. Let R be a domain. If S = R \ {0}, then RS is the field of quotients Q(R). If S ⊆ R \ {0}, then

RS
∼=

{a

s
∈ K|a ∈ R, s ∈ S

}
In particular Q(R) ∼= Q(RS).

Definition 2.45 (S-saturation). Let R be any ring, I ⊆ R an ideal. Even if I is not S-saturated,
J = IS := { is |i ∈ I, s ∈ S} is an ideal in RS , and IS ⊓ R = {r ∈ R|s · r ∈ I, s ∈ S} is called the
S-saturation of I which is the smallest S-saturated ideal containing I.

Lemma 2.46. In the situation of 2.45, if S denotes the image of S in R/I, there is a canonical isomorphism
RS/IS ∼= (R/I)S .

Proof. We show that both rings have the universal property for ring homomorphisms R
τ−→ T with τ(I) = {0}
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and τ(S) ⊆ T×. For such τ , by the fundamental theorem on homomorphisms (Homomorphiesatz) there is a
unique R/I

τ1−→ T such that τ = τ1πR,I . We have τ1(S) = τ(S) ⊆ T×, hence there is a unique (R/I)S
τ2−→ T

such that the composition R/I → (R/I)S
τ2−→ T equals τ1. It is easy to see that this is the only one for which

R→ R/I → (R/I)S
τ2−→ T equals τ .

Similarly, by the universal property of RS there is a unique RS
τ3−→ T whose composition with R→ RS equals

τ . τ3(IS) = 0, hence a unique RS/IS
τ4−→ T whose composition with πRS ,IS equals τ3 exists. This is the only

one for which the composition R→ RS → RS/IS
τ4−→ T equals τ .

R T R

R/I RS

(R/I)S RS/IS

τ

πR,I

τ

∃! τ1 ∃! τ3

πRS,IS

∃! τ2 ∃! τ4

2.11 A first result of dimension theory

Notation 2.47. Let R be a ring, p ∈ SpecR. Let k(p) denote the field of quotients of the domain R/p.
This is called the residue field of p.

Proposition 2.48. Let l be a field, A a l-algebra of finite type and p, q ∈ SpecA with p ⊊ q. Then

trdeg(k(p)/l) > trdeg(k(q)/l)

Proof. Replacing A by A/p, we may assume p = {0} and A to be a domain. Then k(p) = Q(A/p) = Q(A).
If q is a maximal ideal, k(q) = A/q is of finite type over l, hence a finite field extension of l by the Nullstellensatz

(2.3). Thus, trdeg(k(q)/l) = 0. If trdeg(Q(A)/l) = 0, A would be integral over l, hence a field (fact about
integrality and fields, ). But if A is a field, p = {0} is a maximal ideal of A, hence q = p . This finishes the
proof for q ∈ mSpecA. We will use the following lemma to reduce the general case to this case:

Lemma 2.49. There are algebraically independent a1, . . . , an ∈ A whose images in A/q form a transcendence
base for k(q)/l.

There exist a1, . . . , an ∈ A such that k(q) is algebraic over the subfield generated by l and their images ai
(for instance generators of A as a l-algebra). We may assume that n is minimal. If the ai are l-algebraically
dependent, then w.l.o.g. an can be assumed to be algebraic over the subfield generated by l and the ai, 1 ≤ i < n.
Thus, an could be removed, contradicting the minimality.

Let q be any prime ideal. Take a1, . . . , an ∈ A as in the lemma. As the ai mod q are l-algebraically
independent, the same holds for the ai themselves. Thus trdeg(Q(A)/l) ≥ n and the inequality is strict, if it can
be shown that the ai fail to be a transcendence base of Q(A)/l. Let R ⊆ A denote the l-subalgebra generated
by a1, . . . , an and S := R \ {0}. We must show, that Q(A) fails to be algebraic over l1 := RS = Q(R). Let
A1 := AS and qS the prime ideal corresponding to q as in 2.44. We have qS ̸= {0} as {0A}S = {0AS

}. A1 is
a domain with Q(A1) ∼= Q(A) () and A1/qS is isomorphic to the localization of A/q with respect to the image
of S in A/q (2.46). k(qS) is algebraic over l1 because the image of l1 in k(qS) contains the images of l and the
ai, and the images of the ai form a transcendence base for k(q)/l. By the fact about integrality and fields () it
follows that A1/qS is a field, hence qS ∈ mSpec(A1) and the special case of q ∈ mSpec(A) can be applied to qS
and A1/l1 showing that Q(A) cannot be algebraic over l1.

Corollary 2.50. Let X,Y ⊆ kn be irreducible and closed. Then codim(X,Y ) ≤ trdeg(K(Y )/k) −
trdeg(K(X)/k).

Proof. Let X = X0 ⊊ X1 ⊊ . . . ⊊ Xc = Y be a chain of irreducible closed subsets between X and Y . Then
Xi = V (pi) for prime ideals p0 ⊋ p1 ⊋ . . . ⊋ pc in R = k[X1, . . . , Xn]. By 2.48 we have trdeg(k(pi)/k) <
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trdeg(k(pi+1)/k) for all 0 ≤ i < c. Thus

c+ trdeg(K(X)/k) = c+ trdeg(k(p0)/k) ≤ trdeg(k(pc)/k) = trdeg(K(Y )/k)

As codim(X,Y ) = sup{c ∈ N|∃ X = X0 ⊊ . . . ⊊ Xc = Y irreducible, closed} it follows that

codim(X,Y ) ≤ trdeg(K(Y )/k)− trdeg(K(X)/k)

Corollary 2.51. Let Z ⊆ kn be irreducible and closed. Then

dimZ ≤ trdeg(K(Z)/k)

and
codim(Z, kn) ≤ n− trdeg(K(Z)/k

Proof. Take X = {z} and Y = Z or X = Z and Y = kn in 2.50.

2.12 Local rings

Definition 2.52 (Local ring). Let R be a ring. R is called a local ring, if the following equivalent
conditions hold:

• #mSpecR = 1

• R \R× is an ideal.

If this holds, mR := R \R× is the unique maximal ideal of R.

Proof. Suppose mSpecR = {m}. If x ∈ m, then x ̸∈ R× as otherwise xR = R =⇒ m = R. If x ̸∈ R× then xR
is a proper ideal, hence contained in some maximal ideal. Thus x ∈ m.

Assume that m = R \ R× is an ideal in R. As 1 ∈ R× this is a proper ideal. If I is any proper ideal and
x ∈ I, then x ∈ m. Hence R = xR ⊆ I ⊆ m. It follows that m is the only maximal ideal of R.

Remark. • Any field is a local ring (mK = {0}).

• The null ring is not local as it has no maximal ideals.

2.12.1 Localization at a prime ideal

Many questons of commutative algebra are easier in the case of local rings. Localization at a prime ideal is a
technique to reduce a problem to this case.

Proposition 2.53 (Localization at a prime ideal). Let A be a ring and p ∈ SpecA. Then S := A \ p is a
multiplicative subset, AS is a local ring with maximal ideal m = pS = {ps |p ∈ p, s ∈ S}.

We have a bijection

f : SpecAS −→ {q ∈ SpecA|q ⊆ p}
r 7−→ r ⊓A

qS :=
{q

s
|q ∈ q, s ∈ S

}
←− [ q

Proof. It is clear that S is a multiplicative subset and that pS is an ideal. By a
s ∈ pS ⇐⇒ a ∈ p ⇐⇒ a ∈ A\S

for all a ∈ A, s ∈ S. Thus, if a
s ̸∈ pS then it is a unit in AS with inverse s

a . Hence AS is a local ring with
maximal ideal pS .

The claim about SpecAS follows from 2.44 using the fact () that a prime ideal r ∈ SpecA is S-saturated iff
it is disjoint from S = A \ p iff r ⊆ p.

21/48



Algebra 1

Definition 2.54. The ring AS as in 2.53 is called the localization of A at the prime ideal p and
denoted Ap.

Remark. This introduces no ambiguity because a prime ideal is never a multiplicative subset.

Remark. Let B = k[X1, . . . , Xn], x ∈ kn and m the maximal ideal such that V (m) = {x}. The elements
of Bm are the fractions b

s , b ∈ B, s ∈ B \m, i.e. s(x) ̸= 0. These are precisely the rational functions which
are well-defined in some neighbourhood of x. This will be rigorously formulated in 4.21.

Remark. Let Y = V (p) ⊆ kn be an irreducible subset of kn. Elements of Bp are the fractions b
s , s ̸∈ p,

i.e. s does not vanish identically on Y . Thus, Bp is the ring of rational functions on kn which are well
defined on some open subset U intersecting Y . As Y is irreducible, the intersection of two such subsets
still intersects Y .

Remark. For arbitrary A, we have a bijection SpecAp
∼= N = {q ∈ SpecA|p ⊆ p}. One can show that N

is the intersection of all neighbourhoods of p in SpecA, confirming the intuition that “the localization sees
things which go on in arbitrarily small neighbourhoods of p”.

Remark. If A is a domain and p = {0}, then Ap = Q(A).

2.13 Going-up and going-down

Definition 2.55 (Going-up and going-down). Let R be a ring and A an R-algebra.
Going-up holds for A/R if for arbitrary q ∈ SpecA and arbitrary p̃ ∈ SpecR with p̃ ⊇ q ⊓ R there

exists q̃ ∈ SpecA with q ⊆ q̃ and p̃ = q̃ ⊓R.
(We are given p ⊆ p̃ and q such that p = q ⊓R and must make q larger).

q ⊆ q̃ ∈ SpecA

q ⊓R = p ⊆ p̃ ∈ SpecR

·⊓R ·⊓R

Going-down holds for A/R if for arbitrary q̃ ∈ SpecA and arbitrary p ∈ SpecR with p ⊆ q̃ ⊓R, there
exists q ∈ SpecA with q ⊆ q̃ and p = q ⊓R.

(We are given p ⊆ p̃ and q̃ such that p̃ = q̃ ⊓R and must make q̃ smaller).

q ⊆ q̃ ∈ SpecA

p ⊆ p̃ = q̃ ⊓R ∈ SpecR

·⊓R ·⊓R

Remark. In the situation of 2.55, we say q ∈ SpecA lies above p ∈ SpecR if q ⊓R = p.

2.13.1 Going-up for integral ring extensions

Theorem 2.56 (Krull, Cohen-Seidenberg). Let A be a ring and R ⊆ A a subring such that A is integral
over R.

A The map SpecA
q 7→q∩R−−−−−→ SpecR is surjective.
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B For p ∈ SpecR, there are no inclusions between the prime ideals p ∈ SpecA lying over p.

C Going-up holds for A/R.

D q ∈ SpecA is maximal iff p := q ∩R is a maximal ideal of R.

Proof. D Consider the ring extension A/q of R/p. Both rings are domains and the extension is integral. By
the fact about integrality and fields () A/q is a field iff R/p is a field. Thus q ∈ mSpecA ⇐⇒ p ∈ mSpecR.

A Suppose p ∈ SpecR and let S := R \ p. Then S is a multiplicative subset of both R and A, and we may
consider the localizations R ρ−→ Rp, A

α−→ Ap with respect to S. By the universal property of ρ, there exists
a unique homomorphism Rp

i−→ Ap such that iρ = α R. We have j( rs ) = r
s and j is easily seen to be

injective.

R Rp

A Ap

ρ

⊆ ∃! i

α

Ap is integral over Rp. An element x ∈ Ap has the form x = a
s for some s ∈ R \ p and where a ∈ A is

integral over R. Hence an =
∑n−1

i=0 ria
i for some ri ∈ R. Thus xn =

∑n−1
i=0 ρix

i with ρi := si−nri ∈ Rp.
As i is injective and Rp ̸= {0} (Rp is local!) Ap ̸= {0}, there is m ∈ mSpecAp. D has already been
shown and applies to Ap/Rp, hence i−1(m) = pp is the only maximal ideal of the local ring Rp. Hence
q = α−1(m) satisfies

q ∩R = α−1(m) ∩R = ρ−1(i−1(m)) = ρ−1(pp) = p

B The map SpecAp
α−1

−−→ SpecA is injective with image equal to {q ∈ SpecA|q ∩ R ⊆ p}. In particular, it
contains the set of all q lying over p. If q = α−1(r) lies over p, then

ρ−1(i−1(r)) = (α−1(r)) ∩R = q ∩R = p = ρ−1(pp)

hence i−1(r) = pp by the injectivity of SpecRp
ρ−1

−−→ SpecR.

Because D applies to the integral ring extension Ap/Rp and pp ∈ mSpecRp, r is a maximal ideal. There are

thus no inclusions between different such r. Because SpecAp
α−1

−−→ SpecA is ⊆-monotonic and injective,
there are no inclusions between different p ∈ SpecA lying over p.

C Let p ⊆ p̃ be prime ideals of R and q ∈ SpecA such that q ∩R = p. By applying A to the ring extension
A/q of R/p, there is r ∈ SpecA/q such that r ⊓R/p = p̃/p. The preimage q̃ of r under A→ A/q satisfies
q ⊆ q̃ and q̃ ∩R = p̃.

Remark. The proof of 2.56 does not use Noetherianness, as this is not an assumption.

2.13.2 Application to dimension theory: Proof of dimY = trdeg(K(Y )/k)

This is part of the proof of 2.38.

Proof. Let B = k[X1, . . . , Xn] and let X ⊆ Y ⊆ kn be irreducible closed subsets of kn. We have to show
codim(X,Y ) = trdeg(K(Y )/k)− trdeg(K(X) \ k). The inequality

codim(X,Y ) ≤ trdeg(K(Y ) \ k)− trdeg(K(X) \ k)

has been shown in 2.50. In the case of X = {0}, Y = kn, equality holds because the chain of irreducible subsets
{0} ⊊ {0} × k ⊊ . . . ⊊ {0} × kn ⊊ kn can be written down explicitely.

We have Y = V (p) for a unique p ∈ SpecB. Let A = B/p be the ring of polynomials on Y . Apply the
Noether normaization theorem to A. This yields (fi)

d
i=1 ∈ Ad which are algebraically independent over k and

such that A is finite over the subalgebra generated by the fi. Let L be the algebraic closure in K(Y ) of the
subfield of K(Y ) generated by k and the fi. We have A ⊆ L and since K(Y ) = Q(B/p) = Q(A)7 it follows that
K(Y ) = L. Hence (fi)

d
i=1 is a transcendence base for K(y)/k and d = trdegK(Y )/k.

7by definition
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k[X1, . . . , Xd] −→ R

P 7−→ P (f1, . . . , fd)

is an isomorphism and in k[X1, . . . , Xd] there is a strictly ascending chain of prime ideals corresponding to
kd ⊋ {0} × kd−1 ⊋ . . . ⊋ {0}. Thus there is a strictly ascending chain {0} = p0 ⊊ p1 ⊊ . . . ⊊ pd of elements
of SpecR. Let q0 = {0} ∈ SpecA. If 0 < i ≤ d and a chain q0 ⊊ . . . ⊊ qi−1 in SpecA with qj ∩ R = pj for
0 ≤ j < i has been selected, we may apply going-up (2.56) to A/R to extend this chain by a qi ∈ SpecA with
qi−1 ⊆ qi and qi ∩ R = pi (thus qi−1 ⊊ qi as p − i ̸= pi−1). Thus, we have a chain q0 = {0} ⊊ . . . ⊊ qd in
SpecA. Let q̃i := π−1

B,p(qi), Yi := V (q̃i). This is a chain Y = Y0 ⊋ Y1 ⊋ . . . ⊋ Yd of irreducible subsets of kn.
Hence dim(Y ) ≥ trdeg(K(Y )/k).
The general case of codim(X,Y ) ≥ trdeg(K(Y )/k)− trdeg(K(X) \ k) is shown in 2.13.8.

2.13.3 Prime avoidance

Proposition 2.57 (Prime avoidance). Let A be a ring and I ⊆ A a subset which is closed under arbitrary
finite sums and non-empty products, for instance, an ideal in A. Let (pi)

n
i=1 be a finite list of ideals in A

of which at most two fail to be prime ideals and such that there is no i with I ⊆ pi. Then I ̸⊆
⋃n

i=1 pi.

Proof. Induction on n. The case of n < 2 is trivial. Let n ≥ 2 and the assertion be shown for a list of n − 1
ideals one wants to avoid. If n ≥ 3 we may, by reordering the pi assume that p1 is a prime ideal. By the
induction assumption, there is fk ∈ I \

⋃
j ̸=k pj . If there is k with 1 ≤ k ≤ n and fk ̸∈ pk, then the proof is

finished. Otherwise

f1 +

n∏
j=2

fj ∈ I \
n⋃

j=1

pj

2.13.4 The fixed field of the automorphism group of a normal field extension

Recall the definition of a normal field extension in the case of finite field extensions:

Definition 2.58. A finite field extension L/K is called normal, if the following equivalent conditions
hold:

A Let K/K be an algebraic closure of K. Then any two expansions of IdK to a ring homomorphism
L→ K have the same image.

B If P ∈ K[T ] is an irreducible polynomial and P has a zero in L, then P splits into linear factors.

C L is the splitting field of a P ∈ K[T ].

Fact. For an arbitrary algebraic field extension L/K, the following conditions are equivalent:

• L is the union of its subfields which contain K and are finite and normal over K.

• If P ∈ K[T ] is normed, irreducible over K and has a zero in L, then it splits into linear factors in L.

• If L is an algebraic closure of L, then all extensions of IdK to a ring homomorphism L→ L have the
same image.

Definition 2.59 (Normal field extension). An algebraic field extensiona L/K is called normal if the
equivalent conditions from hold.
anot necessarily finite
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Definition 2.60. Suppose L/K is an arbitrary field extension. Let Aut(L/K) be the set of automorphisms
of L leaving all elements of (the image in L of) K fixed. Let G ⊆ Aut(L/K) be a subgroup. Then the
fixed field is definied as

LG := {l ∈ L|∀ g ∈ G : g(l) = l}

Proposition 2.61. Let L/K be a normal field extension. If the characteristic of the fields is O, then
LAut(L/K) = K. If the characteristic is p > 0, then LAut(L/K) = {l ∈ L|∃ n ∈ N lp

n ∈ K}.

Proof. In both cases LG ⊇ is easy to see.
If K ⊆M ⊆ L is an intermediate field, then L is normal over M . If σ ∈ Aut(M/K), an application of Zorn’s

lemma to the set of all (N,ϑ) where N is an intermediate field M ⊆ N ⊆ L and N
ϑ−→ L a ring homomorphism

such that ϑ M = σ shows that σ has an extension to an element of Aut(L/K). If M is normal over K, it is
easily seen to be Aut(L/K) invariant. Thus LG is the union of MAut(M/K) over all intermediate fields which
are finite and normal over K, and it is sufficient to show the proposition for finite normal extensions L/K.

• Characteristic 0: The extension is normal, hence Galois, and the assertion follows from Galois theory.

• Characteristic p > 0: Let l ∈ LG and P ∈ K[T ] be the minimal polynomial of l over K. We show that
lp

n ∈ K for some n ∈ N by induction on deg(l/K) := deg(P ).
If deg(l/K) = 1, we have l ∈ K. Otherwise, assume that the assertion has been shown for elements of LG

whose degree over K is smaller than deg(l/K). Let L be an algebraic closure of L and λ a zero of P in
L. If M = K(l) ⊆ L, then there is a ring homomorphism M − L sending l to λ. This can be extended to
a ring homomorphism L

σ−→ L. We have σ ∈ G because L/K is normal. Hence λ = σ(l) = l, as l ∈ LG.
Thus l is the only zero of P in L and because degP > 1 it is a multiple zero. It is shown in the Galois
theory lecture that this is possible only when P (T ) = Q(T p) for some Q ∈ K[T ]. Then Q(lp) = 0 and the
induction assumption can be applied to x = lp showing xpm ∈ K hence lp

m+1 ∈ K for some m ∈ N.

2.13.5 Integral closure and normal domains

Definition 2.62 (Integral closure, normal domains). Let A be a domain with field of quotients Q(A) and
let L be a field extension of Q(A). By 1.9 the set of elements of L integral over A is a subring of L, the
integral closure of A in L. A is Domain!integrally closed in L if the integral closure of A in L equals
A. A is Domain!normal if it is integrally closed in Q(A).

Proposition 2.63. Any factorial domain (UFD) is normal.

Proof. Let x ∈ Q(A) be integral over A. Then there is a normed polynomial P ∈ A[T ] with P (x) = 0. In
Einführung in die Algebrait was shown that A[T ] is a UFD and that the prime elements of A[T ] are the elements
which are irreducible in Q(A)[T ] and for which the gcd of the coefficients is ∼ 1. The prime factors of a normed
polynomial are all normed up to multiplicative equivalence. We may thus assume P to be irreducible in Q(A)[T ].
But then degP = 1 as x is a zero of P in Q(A), hence P (T ) = T − x and x ∈ A as P ∈ A[T ].

Alternative proof8: Let x = a
b ∈ Q(A) be integral over A. W.l.o.g. gcd(a, b) = 1. Then xn + cn−1x

n−1 +
. . .+ c0 = 0 for some ci ∈ A. Multiplication with bn yields an + cn−1ba

n−1 + . . .+ c0b
n = 0. Thus b|an. Since

gcd(a, b) = 1 it follows that b is a unit, hence x ∈ A.

Remark. It follows from 1.10 and that the integral closure of A in some field extension L of Q(A) is
always normal.

Remark. A finite field extension of Q is called an algebraic number field (ANF). If K is an ANF, let
OK (the ring of integers in K) be the integral closure of Z in K. One can show that this is a finitely
generated (hence free, by results of Einführung in die Algebra) abelian group. We have OQ = Z by the

8http://www.math.lsa.umich.edu/~tfylam/Math221/2.pdf
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proposiiton.

2.13.6 Action of Aut(L/K) on prime ideals of a normal ring extension

Theorem 2.64. Let A be a normal domain, L a normal field extension of K := Q(A), B the integral
closure of A in L and p ∈ SpecA. Then G := Aut(L/K) transitively acts on {q ∈ SpecB|q ∩A = p}.

Proof. Let q, r be prime ideals of B above the given p ∈ SpecA. We must show that there exists σ ∈ G such
that q = σ(r). This is equivalent to q ⊆ σ(r), since the Krull going-up theorem (2.56) applies to the integral
ring extension B/A, showing that there are no inclusions between different elements of SpecB lying above
p ∈ SpecA.

If L/K is finite and there is no such σ, then by prime avoidance (2.57) there is x ∈ q \
⋃

σ∈G σ(r). As r is a
prime ideal, y =

∏
σ∈G σ(x) ∈ q \ r.9 By the characterization of LG for normal field extensions (2.61), there is a

positive integer k with yk ∈ K. As A is normal, we have yk ∈ K∩B = A. Thus yk ∈ (A∩q)\(A∩r) = p\p = ∅ .
If L/K is not finite, one applies Zorn’s lemma to the poset of pairs (M,σ) where M is an intermediate field

and σ ∈ Aut(M/K) such that σ(r ∩M) = q ∩M .

Remark. The theorem is very important for its own sake. For instance, if K is an ANF which is a Galois
extension of Q it shows that Gal(K/Q) transitively acts on the set of prime ideals of OK over a given
prime number p. More generally, if L/K is a Galois extension of ANF then Gal(L/K) transitively acts on
the set of q ∈ SpecOL for which q ∩K is a given p ∈ SpecOK .

2.13.7 A going-down theorem

Theorem 2.65 (Going-down for integral extensions of normal domains (Krull)). Let B be a domain which
is integral over its subring A. If A is a normal domain, then going-down holds for B/A.

Proof. It follows from the assumptions that the field of quotients Q(B) is an algebraic field extension of Q(A).
There is an algebraic extension L of Q(B) such that L/Q(A) is normal (for instance an algebraic closure of
Q(B)). Let C be the integral closure of A in L. Then B ⊆ C and C/B is integral.

Q(A) Q(B) L := Q(B)

A B C

Going-down holds for C/A. Let p ⊆ p̃ be an inclusion of prime ideals of A and r̃ ∈ SpecC with r̃∩A = p̃. By
going-up for integral ring extensions (2.56), SpecC ·∩A−−→ SpecA is surjectiv. Thus there is r′ ∈ SpecC such that
r′ ∩A = p. By going up for C/A there is r̃′ ∈ SpecC with r̃′ ∩A = p̃, r′ ⊆ r̃′. By the theorem about the action
of the automorphism group on prime ideals of a normal ring extension (2.64) there exists a σ ∈ Aut(L/Q(A))
with σ(r̃′) = r̃. Then r := σ(r′) satisfies r ⊆ r̃ and r ∩A = p. If p ⊆ p̃ is an inclusion of elements of SpecA and
q̃ ∈ SpecB with p̃ ∩A = p̃, by the surjectivity of SpecC ·∩B−−→ SpecB (2.56) there is r̃ ∈ SpecC with r̃ ∩B = q.
By going-down for C/A, there is r ∈ SpecC with r ⊆ r̃ and r ∩ A = p. Then q := r ∩ B ∈ SpecB, q ⊆ q̃ and
q ∩A = p. Thus going-down holds for B/A.

Remark (Universally Japanese rings). A Noetherian ring A is called universally Japanese if for every
p ∈ SpecA and every finite field extension L of k(p), the integral closure of A/p in L is a finitely generated
A-module. This notion was coined by Grothendieck because the condition was extensively studied by the
Japanese mathematician Nataga Masayoshji. By a hard result of Nagata, algebras of finite type over a
universally Japanese ring are universally Japanese. Every field is universally Japanese, as is every PID of
characteristic 0. There are, however, examples of Noetherian rings which fail to be universally Japanese.

9∏
σ∈G σ(x) =

∏
σ∈G σ−1(x)

26/48



Algebra 1

Example† (Counterexample to going down). Let R = k[X,Y ] and A = k[X,Y, X
Y ]. Then going down does

not hold for A/R:
For any ideal Y ∈ q ⊆ A we have X = X

Y · Y ∈ q. Consider (Y )R ⊊ (X,Y )R ⊆ q ∩ R. As (X,Y )R is
maximal and the preimage of a prime ideal is prime and thus proper, we have (X,Y )R = q∩R. The prime
ideal (XY , Y )A = (XY , X, Y )A is lying over (X,Y )R, so going down is violated.

2.13.8 Proof of codim({y}, Y ) = trdeg(K(Y )/k)

This is part of the proof of 2.38.

Proof. Let B = k[X1, . . . , Xn] and X ⊆ Y = V (p) ⊆ kn irreducible closed subsets of kn. We want to show that
codim(X,Y ) = trdeg(K(Y )/k) − trdeg(K(X)/k). ≤ was shown in 2.50. dimY ≥ trdeg(K(Y )/k) was shown in
2.13.2 by

Applying Noether normalization to A := B/p, giving us (fi)
d
i=1 ∈ Ad such that the fi are algebraically

independent and A finite over the subalgebra generated by them. We then used going-up to lift a chain of prime
ideals corresponding to kd ⊋ {0} × kn−1 ⊋ . . . ⊋ {0} under Y

F=(f1,...,fd)−−−−−−−−→ kd to a chain of prime ideals in A.
This was done left-to-right as going-up was used to make prime ideals larger. In particular, when {0} ∈ kd has
several preimages under F we cannot control to which of them the maximal ideal terminating the lifted chain
belongs. Thus, we can show that in the inequality

codim({y}, Y ) ≤ d = trdeg(K(Y ) \ k)

(see 2.50) equality holds for at least one pint y ∈ F−1({0}) but cannot rule out that there are other y ∈ F−1({0})
for which the inequality becomes strict. However using going-down (2.65) for F , we can use a similar argument,
but start lifting of the chain at the right end for the point y ∈ Y for which we would like to show equality. From
this codim(X,Y ) ≥ trdeg(K(Y )/k)− trdeg(K(X)/k) can be derived similarly to 2.50. Thus

codim(X,Y ) = trdeg(K(Y )/k)− trdeg(K(X)/k)

follows (see and 2.68).

Remark. The going-down theorem used to prove this is somewhat more general, as it does not depend on
k being algebraically closed.

2.14 The height of a prime ideal
In order to complete the proof of 2.13.8 and show codim(X,Y ) = trdeg(K(Y )/k) − trdeg(K(X)/k), we need to
localize the k-algebra with respect to a multiplicative subset and replace the ground field by a larger subfield of
that localization which is no longer algebraically closed. To formulate a result which still applies in this context,
we need the following:

Definition 2.66 (Height of a prime ideal). Let A be a ring, p ∈ SpecA. We define the height of
the prime ideal p, ht(p), to be the largest k ∈ N such that there is a strictly decreasing sequence
p = p0 ⊋ p1 ⊋ . . . ⊋ pk of prime ideals of A, or ∞ if there is no finite upper bound on the length of such
sequences.

Example. Let A = k[X1, . . . , Xn], X = V (p) for a prime ideal p. By the correspondence between
irreducible subsets of kn and prime ideals in A (2.21), the pi correspond to irreducible subsets Xi ⊆ kn

containing X. Thus ht(p) = codim(X, kn).

Example. Let B = k[X1, . . . , Xn], q ∈ SpecB and let A := B/p. Let Y := V (q) ⊆ kn, p̃ := π−1
B,q(p), where

B
πB,p−−−→ A is the projection to the ring of residue classes, and let X = V (p̃). By 2.44 we have a bijection

between the prime ideals r ⊆ p of A contained in p and the prime ideals and the prime ideals r̃ ∈ SpecB
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with q ⊆ r̃ ⊆ p̃:

f : {r ∈ SpecA|r ⊆ p} −→ {r̃ ∈ SpecB|q ⊆ r̃ ⊆ p̃}
r 7−→ π−1

B,q(r)

r̃/q←− [ r̃

By 2.21, the r̃ are in canonical bijection with the irreducible subsets Z of Y containing X. Thus, the chains
p = p0 ⊋ . . . ⊋ pk are in canonical bijection with the chains X = X0 ⊊ X1 ⊊ . . . ⊊ Xk ⊆ Y of irreducible
subsets and ht(p) = codim(X,Y ).

Remark. Let A be an arbitrary ring. One can show that there is a bijection between SpecA and the set
of irreducible subsets Y ⊆ SpecA:

f : SpecA −→ {Y ⊆ SpecA|Y irreducible}
p 7−→ VS(p)⋃

p∈Y

p←− [ Y

Thus, the chains p = p0 ⊋ . . . ⊋ pk are in canonical bijection with the chains V (p) = X0 ⊊ X1 ⊊ . . . ⊊
Xk ⊆ SpecA of irreducible subsets, and ht(p) = codim(V (p),SpecA).

2.14.1 The relation between ht(p) and trdeg

We will use the following

Lemma 2.67. Let l be an arbitrary field, A a l-algebra of finite type which is a domain, K := Q(A) the
field of quotients and let (ai)

n
i=1 be l-algebraically independent elements of A. Then there exist a natural

number m ≥ n and a transcendence base (ai)
m
i=1 for K/l with ai ∈ A for 1 ≤ i ≤ m.

Proof. The proof is similar to the proof of 2.49. There are a natural number m ≥ n and elements (ai)
m
i=n+1 ∈

Am−n which generate K in the sense of a matroid used in the definition of trdeg. For instance, one can use
generators of the l-algebra A. We assume m to be minimal and claim that (ai)mi=1 are l-algebraically independent.
Otherwise there is j ∈ N, 1 ≤ j ≤ m such that aj is algebraic over the subfield of K generated by l and the
(ai)

j−1
i=1 . We have j > n by the algebraic independence of (ai)

n
i=1. Exchanging xj and xm, we may assume

j = m. But then K is algebraic over its subfield generated by l and the (ai)
m−1
i=1 , contradicting the minimality

of m.

Theorem 2.68. Let l be an arbitrary field, A a l-algebra of finite type which is a domain, and p ∈ SpecA.
Let K := Q(A) be the field of quotients of A. Then

ht(p) = trdeg(K/l)− trdeg(k(p)/l)

Remark. By example , theorem 2.38 is a special case of this theorem.

Proof. If p = p0 ⊋ p1 ⊋ . . . ⊋ pk is a chain of prime ideals in A, we have trdeg(k(pi)/l) < trdeg(k(pi+1)/l) by
2.48 (“A first result of dimension theory”). Thus

k ≤ trdeg(k(pk)/l)− trdeg(k(p)/l) ≤ trdeg(K/l)− trdeg(k(p)/l)

where the last inequality is another application of 2.48 (using K = Q(A) = Q(A/{0}) = k({0}) and the fact
that {0} ⊆ pk is a prime ideal). Hence

ht(p) ≤ trdeg(K/l)− trdeg(k(p)/l)

and it remains to show the opposite inequality.
For any maximal ideal p ∈ mSpecA

ht(m) ≥ trdeg(K/l)
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By the Noether normalization theorem (1.12), there are (xi)
d
i=1 ∈ Ad which are algebraically independent

over l such that A is finite over the subalgebra S generated by the xi. We have d = trdeg(K/l) as the xi form
a transcendence base of K/l. We can choose xi ∈ m By the Nullstellensatz (2.3), k(m) = A/m is a finite
field extension of l. Hence there exists a normed polynomial Pi ∈ l[T ] with Pi(xi mod m) = 0 in k(m). Let
x̃i := Pi(xi) ∈ m and S̃ the subalgebra generated by the x̃i. As Pi(xi)− x̃i = 0, xi is integral over S̃ and so is
S/S̃. It follows that A/S̃ is integral, hence finite by . Replacing xi by x̃i, we may thus assume that xi ∈ m.

The ring homomorphism evx : R = l[X1, . . . , Xd]
P 7→P (x1,...,xd)−−−−−−−−−−→ A is injective. Because R is a UFD, R is

normal (2.63). Thus the going-down theorem (2.65) applies to the integral R-algebra A. For 0 ≤ i ≤ d, let
pi ⊆ R be the ideal generated by (Xj)

d
j=i+1. We have m ⊓R = p0 as all Xi ∈ m, hence Xi ∈ m ⊓R and p0 is a

maximal ideal. By applying going-down and induction on i, there is a chain m = q0 ⊋ p1 ⊋ . . . ⊋ pd of elements
of SpecA such that qi ⊓R = pi. It follows that ht(m) ≥ d. This finishes the proof in the case of p ∈ mSpecA.

To reduce the general case to that special case, we proceed as in 2.48: By lemma 2.49 there are a1, . . . , an ∈ A
whose images in A/p form a transcendence base for k(p)/l. As these images are l-algebraically independent, the
same holds for the ai themselves.

By lemma 2.67 we can extend (ai)
n
i=1 to a transcendence base (ai)

m
i=1 ∈ Am of K/l. Let R ⊆ A denote the

l-subalgebra generated by a1, . . . , an and let S := R\{0}. Let A1 := AS and pS the prime ideal corresponding to
p under Spec(A1) ∼= {r ∈ SpecA|r∩S = ∅} (2.44). As in , A1 is a domain with Q(A1) ∼= K = Q(A) and by 2.46
A1/pS ∼= (A/p)S , where S denotes the image of S in A/p. As in 2.48, k(pS) ∼= k(p) is integral over A1/pS . From
the fact about integrality and fields (), it follows that A1/pS is a field. Hence pS ∈ mSpec(A1) and the special
case can be applied to pS and A1/l1, showing that ht(pS) ≥ e = trdeg(K/l1). We have trdeg(K/l1) = m − n,
as (ai)mi=n+1 is a transcendence base for K/l1. By the description of SpecAS (2.44), a chain pS = q0 ⊋ . . . ⊋ pe
of prime ideals in AS defines a similar chain pi := qi ⊓A in A with p0 = p. Thus ht(p) ≥ e.

Remark. As a consequence of his principal ideal theorem, Krull has shown the finiteness of ht(p) for
p ∈ SpecA when A is a Noetherian ring. But dimA = supp∈SpecA ht(p) = supm∈mSpecA ht(m), the Krull
dimension of the Noetherian topological space SpecA may nevertheless be infinite.

Example† (Noetherian ring with infinite dimension). a Let A = k[Xi|i ∈ N] and m1,m2, . . . ∈ N an
increasing sequence such that mi+1−mi > mi−mi−1. Let pi := (Xmi+1, . . . , Xmi+1

) and S := A\
⋃

i∈N pi.
S is multiplicatively closed. AS is Noetherian but ht((pi)S) = mi+1 −mi hence dim(AS) =∞.
ahttps://math.stackexchange.com/questions/1109732/noetherian-ring-with-infinite-krull-dimension-nagatas-example

2.15 Dimension of products

Proposition 2.69. Let X ⊆ kn and Y ⊆ kn be irreducible and closed. Then X × Y is also an irreducible
closed subset of km+n. Moreover, dim(X×Y ) = dim(X)+dim(Y ) and codim(X×Y, km+n) = codim(X, km)+
codim(Y, kn).

Proof. Let X = V (p) and Y = V (q) where p ∈ Spec k[X1, . . . , Xm] and q ∈ Spec k[X1, . . . , Xn]. We denote points
of km+n as x = (x′, x′′) with x′ ∈ km, x′′ ∈ kn. Then X × Y is the set of zeroes of the ideal in k[X1, . . . , Xm+n]
generated by the polynomials f(x) = ϕ(x′), with ϕ running over p and g(x) = γ(x′′) with γ running over q.
Thus X × Y is closed in km+n. We must also show irreducibility. X × Y ̸= ∅ is obvious.

Assume that X × Y = A1 ∪A2, where the Ai ⊆ km+n are closed. For x′ ∈ km, x′× Y is homeomorphic to the
irreducible Y . Thus X = X1∪X2 where Xi = {x ∈ X|{x}×Y ⊆ Ai}. Because Xi =

⋂
y∈Y {x ∈ X|(x, y) ∈ Ai},

this is closed. As X is irreducible, there is i ∈ {1; 2} which Xi = X. Then X × Y = Ai confirming the
irreducibility of X × Y .

Let a = dimX and b = dimY and X0 ⊊ X1 ⊊ . . . ⊊ Xa = X,Y0 ⊊ Y1 ⊊ . . . ⊊ Yb = Y be chains of
irreducible subsets. By the previous result, X0 × Y0 ⊊ X1 × Y0 ⊊ . . . ⊊ Xa × Y0 ⊊ Xa × Y1 ⊊ . . . ⊊ Xa × Ya =
X × Y is a chain of irreducible subsets. Thus dim(X × Y ) ≥ a + b = dimX + dimY . Similarly one derives
codim(X × Y, km+n) ≥ codim(X, km) + codim(Y, kn). By 2.38 we have dim(A) + codim(A, kl) = l for irreducible
subsets of kl. Thus equality must hold in the previous two inequalities.

2.16 The nil radical

Notation 2.70. Let VS(I) denote the set of p ∈ SpecA containing I.
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Proposition 2.71 (Nil radical). For a ring A,
⋂

p∈SpecA p =
√
{0} = {a ∈ A|∃ k ∈ N ak = 0} :=nil(A),

the set of nilpotent elements of A. This is called the nil radical of A.

Proof. It is clear that elements of
√
{0} must belong to all prime ideals. Conversely, let a ∈ A \

√
{0}. Then

S = aN is a multiplicative subset of A not containing 0. The localisation AS of A is thus not the null ring.
Hence SpecAS ̸= ∅. If q ∈ SpecAS , then by the description of SpecAS (2.44), p := q ⊓A is a prime ideal of A
disjoint from S, hence a ̸∈ p.

Corollary 2.72. For an ideal I of R,
√
I =

⋂
p∈VS(I)

p.

Proof. This is obtained by applying the proposition to A = R/I and using the bijection Spec(R/I) ∼= V (I)
sending p ∈ V (I) to p := p/I and q ∈ Spec(R/I) to its inverse image p in R.

2.16.1 Closed subsets of SpecR

Proposition 2.73. There is a bijection

f : {A ⊆ SpecR|A closed} −→ {I ⊆ R|I ideal and I =
√
I}

A 7−→
⋂
p∈A

p

VS(I)←− [ I

Under this bijection, the irreducible subsets correspond to the prime ideals and the closed points {m},m ∈
SpecA to the maximal ideals.

Proof. If A = VS(I), then by 2.72
√
I =

⋂
p∈A p. Thus, an ideal with

√
I = I can be recovered from VS(I).

Since VS(J) = VS(
√
J), the map from ideals with

√
I = I to closed subsets is surjective.

Sine R corresponds to ∅, the proper ideals correspond to non-empty subsets of SpecR. Assume that VS(I) =
VS(J1) ∪ VS(J2), where the decomposition is proper and the ideals coincide with their radicals. Let g = f1f2
with fk ∈ Jk \ I. Since VS(g) ⊇ VS(fk) ⊇ VS(Ik), VS(I) ⊆ VS(g). Hence g ∈

√
I = I. As fk ̸∈ I, I fails to be

a prime ideal. Conversely, assume that f1f2 ∈ I while the factors are not in I. Since I =
√
I, VS(fk) ̸⊇ VS(I).

But VS(f1) ∪ VS(f2) = VS(f1f2) ⊇ VS(I). The proper decomposition VS(I) = (VS(I) ∩ VS(f1)) ∪ (VS(I) ∩ VS(f2))
now shows that VS(I) fails to be irreducible. The final assertion is trivial.

Corollary 2.74. If R is a Noetherian ring, then SpecR is a Noetherian topological space.

Remark. It is not particularly hard to come up with examples which show that the converse implication
does not hold.

Example†. Let A = k[Xn|n ∈ N]/I where I denotes the ideal generated by {X2
i |i ∈ N}. A is not

Noetherian, since the ideal J generated by {Xi|i ∈ N} is not finitely generated. A/J ∼= k, hence J is
maximal. As every prime ideal must contain nil(A) ⊇ J , J is the only prime ideal. Thus SpecA contains
only one element and is hence Noetherian.

Corollary 2.75 (About the smallest prime ideals containing I ). If R is Noetherian and I ⊆ R an ideal,
then the set VS(I) = {p ∈ SpecR|I ⊆ p} has finitely many ⊆-minimal elements (pi)

k
i=1 and every element

of V (I) contains at least one pi. The VS(pi) are precisely the irreducible components of V (I). Moreover⋂k
i=1 pi =

√
I and k > 0 if I is a proper ideal.

Proof. If VS(I) =
⋃k

i=1 VS(pi) is the decomposition into irreducible components then every q ∈ VS(I) must
belong to at least one VS(pi), hence pi ⊆ q. Also pi ∈ VS(pi) ⊆ VS(I). It follows that the sets of ⊆-minimal
elements of VS(I) and of {p1, . . . , pk} coincide. As there are no non-trivial inclusions between the VS(pi), there
are no non-trivial inclusions between the pi and the assertion follows. The final remark is trivial.
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Corollary 2.76. If R is any ring, ht(p) = codim(VS(p),SpecR).

2.17 The principal ideal theorem
Krull was able to show:

Theorem 2.77 (Principal ideal theorem / Hauptidealsatz). Let A be a Noetherian ring, a ∈ A and
p ∈ SpecA a ⊆-minimal element of VS(a). Then ht(p) ≤ 1.

Proof. Probably not relevant for the exam.

Remark. Intuitively, the theorem says that by imposing a single equation one ends up in codimension at
most 1. This would not be true in real analysis (or real algebraic geometry) as the equation

∑n
i=1 X

2
i = 0

shows. By 2.75, if a is a non-unit then a p ∈ SpecA to which the theorem applies can always be found.
Using induction on k, Krull was able to derive:

Theorem 2.78 (Generalized principal ideal theorem). Let A be a Noetherian ring, (ai)
k
i=1 ∈ A and

p ∈ SpecA a ⊆-minimal element of
⋂k

i=1 V (ai), the set of prime ideals containing all ai. Then ht(p) ≤ k.

Modern approaches to the principal ideal theorem usually give a direct proof of this more general theorem.

Corollary 2.79. If R is a Noetherian ring and p ∈ SpecR, then ht(p) <∞.

Proof. If p is generated by (fi)
k
i=1, then ht(p) ≤ k.

2.17.1 Application to the dimension of intersections

Remark. Let R = k[X1, . . . , Xn] and I ⊆ R an ideal.
If (pi)ki=1 are the smallest prime ideals of R containing I, then (VA(pi))

k
i=1 are the irreducible components

of VA(I).

Proof. The VA(pi) are irreducible, there are no non-trivial inclusions between them and VA(I) = VA(
√
I) =

VA(
⋂k

i=1 pi) =
⋃k

i=1 VA(pi).

Corollary 2.80 (of the principal ideal theorem). Let X ⊆ kn be irreducible, (fi)
k
i=1 elements of R =

k[X1, . . . , Xn] and Y an irreducible component of A = X ∩
⋂k

i=1 V (fi). Then codim(Y,X) ≤ k.

Remark. This confirms the naive geometric intuition that by imposing k equations one ends up in
codimension at most k.

Proof. If X = v(p), X ∩
⋂k

i=1 V (fi) = V (I) where I ⊆ R is the ideal generated by p and the fi. By , Y = V (q)
where q is the smallest prime ideal containing I. Then q/p is a smallest prime ideal of R/p containing all (fi
mod p)ki=1. By the principal ideal theorem (2.77), ht(q/p) ≤ k and the assertion follows from example .

Remark. Note that the intersection X ∩
⋂k

i=1 V (fi) can easily be empty, even when k is much smaller
than dimX.

Corollary 2.81. Let A and B be irreducible subsets of kn. If C is an irreducible component of A ∩ B,
then codim(C, kn) ≤ codim(A, kn) + codim(B, kn).
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Remark†. Equivalently, dim(C) ≥ dim(A) + dim(B)− n.

Proof. Let X = A × B ⊆ k2n, where we use (X1, . . . , Xn, Y1, . . . , Yn) as coordinates of k2n. Let ∆ :=
{(x1, . . . , xn, x1, . . . , xn)|x ∈ kn} be the diagonal in kn × kn. The projection k2n → kn to the X-coordinates
defines a homeomorphism between (A × B) ∩ ∆ and A ∩ B. Thus, C is homeomorphic to an irreducible
component C ′ of (A×B) ∩∆ and

codim(C, kn) = n− dim(C) = n− dim(C ′) = n− dim(A×B) + codim(C ′, A×B)

2.80
≤ 2n− dim(A×B)

2.69
= 2n− dim(A)− dim(B) = codim(A, kn) + codim(B, kn)

by the general properties of dimension and codimension, 2.80 applied to (Xi − Yi)
n
i=1, the result about the

dimension of products (2.69) and again the general properties of dimension and codimension.

Remark. As in , A ∩B can easily be empty, even when A and B have codimension 1 and n is very large.

2.17.2 Application to the property of being a UFD

Proposition 2.82. aLet R be a Noetherian domain. Then R is a UFD iff every p ∈ SpecR with ht(p) = 1b

is a principal ideal.
aLimited relevance for the exam.
bIn other words, every ⊆-minimal element of the set of non-zero prime ideals of R

Proof. Every element of every Noetherian domain can be written as a product of irreducible elements.10 Thus,
R is a UFD iff every irreducible element of R is prime.

Assume that this is the case. Let p ∈ SpecR,ht(p) = 1. Let p ∈ p \ {0}. Replacing p by a prime factor of p,
we may assume p to be prime. Thus {0} ⊊ pR ⊆ p is a chain of prime ideals and since ht(p) = 1 it follows that
p = pR.

Conversely, assume that every p ∈ SpecR with ht(p) = 1 is a principal ideal. Let f ∈ R be irreducible. Let
p ∈ SpecR be a ⊆-minimal element of V (f). By the principal ideal theorem (2.77), ht(p) = 1. Thus p = pR for
some prime element p. We have p|f since f ∈ p. As f is irreducible, p and f are multiplicatively equivalent.
Thus f is a prime element.

2.18 The Jacobson radical
11

Proposition 2.83. For a ring A,
⋂

m∈mSpecA m = {a ∈ A|∀ x ∈ A 1− ax ∈ A×} :=rad(A), the Jacobson
radical of A.

Proof. Suppose m ∈ mSpecA and a ∈ A \m. Then a mod m ̸= 0 and A/m is a field. Hence a mod m has an
inverse x mod m. 1− ax ∈ m, hence 1− ax ̸∈ A× and a is not al element of the RHS.

Conversely, let a ∈ A belong to all m ∈ mSpecA. If there exists x ∈ A such that 1− ax ̸∈ A× then (1− ax)A
was a proper ideal in A, hence contained in a maximal ideal m. As a ∈ m, 1 = (1−ax)+ax ∈ m, a contradiction.
Hence every element of

⋂
m∈mSpecA m belongs to the right hand side.

Example. If A is a local ring, then rad(A) = mA.

Example. If A is a PID with infinitely many multiplicative equivalence classes of prime elements (e.g. Z
of k[X]), then rad(A) = {0}: Prime ideals of a PID are maximal. Thus if x ∈ rad(A), every prime element
divides x. If x ̸= 0, it follows that x has infinitely many prime divisors. However every PID is a UFD.

10Consider the set of principal ideals rR where r is not a product of irreducible elements.
11Limited relevance for the exam.
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Example. If A is a PID for which p1, . . . , pn is a list of representatives of the multiplicative equivalence
classes of prime elements, then rad(A) = fA where f =

∏n
i=1 pi.

3 Projective spaces
Let l be any field.

Definition 3.1. For a l-vector space V , let P(V ) be the set of one-dimensional subspaces of V . Let
Pn(l) := P(ln+1), the n-dimensional projective space over l.

If l is kept fixed, we will often write Pn for Pn(l).
When dealing with Pn, the usual convention is to use 0 as the index of the first coordinate.
We denote the one-dimensional subspace generated by (x0, . . . , xn) ∈ kn+1 \ {0} by [x0, . . . , xn] ∈ Pn.

If x = [x0, . . . , xn] ∈ Pn, the (xi)
n
i=0 are called homogeneous coordinates of x. At least one of the xi

must be ̸= 0.

Remark. There are points [1, 0], [0, 1] ∈ P1 but there is no point [0, 0] ∈ P1.

Definition 3.2 (Infinite hyperplane). For 0 ≤ i ≤ n let Ui ⊆ Pn denote the set of [x0, . . . , xn] with xi ̸= 0.
This is a correct definition since two different sets [x0, . . . , xn] and [ξ0, . . . , ξn] of homogeneous coordinates
for the same point x ∈ Pn differ by scaling with a λ ∈ l×, xi = λξi. Since not all xi may be 0, Pn =

⋃n
i=0 Ui.

We identify An = An(l) = ln with U0 by identifying (x1, . . . , xn) ∈ An with [1, x1, . . . , xn] ∈ Pn. Then
P1 = A1 ∪ {∞} where ∞ = [0, 1]. More generally, when n > 0 Pn \ An can be identified with Pn−1

identifying [0, x1, . . . , xn] ∈ Pn \ An with [x1, . . . , xn] ∈ Pn−1.
Thus Pn is An ∼= ln with a copy of Pn−1 added as an infinite hyperplane .

3.0.1 Graded rings and homogeneous ideals

Notation 3.3. Let I = N or I = Z.

Definition 3.4. By an I-graded ring A• we understand a ring A with a collection (Ad)d∈I of subgroups
of the additive group (A,+) such that Aa ·Ab ⊆ Aa+b for a, b ∈ I and such that A =

⊕
d∈I Ad in the sense

that every r ∈ A has a unique decomposition r =
∑

d∈I rd with rd ∈ Ad and but finitely many rd ̸= 0.
We call the rd the homogeneous components of r.
An ideal I ⊆ A is called homogeneous if r ∈ I =⇒ ∀ d ∈ I rd ∈ Id where Id := I ∩Ad.
By a graded ring we understand an N-graded ring. Tin this case, A+ :=

⊕∞
d=1 Ad = {r ∈ A|r0 = 0} is

called the augmentation ideal of A.

Remark (Decomposition of 1). If 1 =
∑

d∈I εd is the decomposition into homogeneous components, then
εa = 1 · εa =

∑
b∈I εaεb with εaεb ∈ Aa+b. By the uniqueness of the decomposition into homogeneous

components, εaε0 = εa and b ̸= 0 =⇒ εaεb = 0. Applying the last equation with a = 0 gives b ̸= 0 =⇒
εb = ε0εb = 0. Thus 1 = ε0 ∈ A0.

Remark. The augmentation ideal of a graded ring is a homogeneous ideal.

Proposition 3.5. a

• A principal ideal generated by a homogeneous element is homogeneous.

• The operations
∑

,
⋂
,
√ preserve homogeneity.

• An ideal is homogeneous iff it can be generated by a family of homogeneous elements.
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aThis holds for both Z-graded and N-graded rings.

Proof. Most assertions are trivial. We only show that J homogeneous =⇒
√
J homogeneous. Let A be

I-graded, f ∈
√
J and f =

∑
d∈I fd the decomposition. To show that all fd ∈

√
J , we use induction on

Nf := #{d ∈ I|fd ̸= 0}. Nf = 0 is trivial. Suppose Nf > 0 and e ∈ I is maximal with fe ̸= 0. For l ∈ N, the
le-th homogeneous component of f l is f l

e. Choosing l large enough such that f l ∈ J and using the homogeneity
of J , we find fe ∈

√
J . As

√
J is an ideal, f̃ := f − fe ∈

√
J . As Nf̃ = Nf − 1, the induction assumption may

be applied to f̃ and shows fd ∈
√
J for d ̸= e.

Fact. A homogeneous ideal is finitely generated iff it can be generated by finitely many of its homogeneous
elements. In particular, this is always the case when A is a Noetherian ring.

3.0.2 The Zariski topology on Pn

Notation 3.6. Recall that for α ∈ Nn+1 |α| =
∑n

i=0 αi and xα = xα0
0 · . . . · xαn

n .

Definition 3.7 (Homogeneous polynomials). Let R be any ring and f =
∑

α∈Nn+1 fαX
α ∈ R[X0, . . . , Xn].

We say that f is homogeneous of degree d if |α| ≠ d =⇒ fα = 0 . We denote the subset of homogeneous
polynomials of degree d by R[X0, . . . , Xn]d ⊆ R[X0, . . . , Xn].

Remark. This definition gives R the structure of a graded ring.

Definition 3.8 (Zariski topology on Pn(k)). Let A = k[X0, . . . , Xn].a For f ∈ Ad = k[X0, . . . , Xn]d, the
validity of the equation f(x0, . . . , xn) = 0 does not depend on the choice of homogeneous coordinates, as

f(λx0, . . . , λxn)0λ
df(x0, . . . , xn)

Let VP(f) := {x ∈ Pn|f(x) = 0}.
We call a subset X ⊆ Pn Zariski-closed if it can be represented as

X =

k⋂
i=1

VP(fi)

where the fi ∈ Adi are homogeneous polynomials.
aAs always, k is algebraically closed
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Fact. If X =
⋂k

i=1 VP(fi) ⊆ Pn is closed, then Y = X ∩ An can be identified with the closed subset

{(x1, . . . , xn) ∈ kn|fi(1, x1, . . . , xn) = 0, 1 ≤ i ≤ k} ⊆ kn

Conversely, if Y ⊆ kn is closed it has the form

{(x1, . . . , xn) ∈ kn|gi(x1, . . . , xn) = 0, 1 ≤ i ≤ k}

and can thus be identified with X ∩ An where X :=
⋂k

i=1 VP(fi) is given by

fi(X0, . . . , Xn) := Xdi
0 gi(X1/X0, . . . , Xn/X0), di ≥ deg(gi)

Thus, the Zariski topology on kn can be identified with the topology induced by the Zariski topology on
An = U0, and the same holds for Ui with 0 ≤ i ≤ n.

In this sense, the Zariski topology on Pn can be thought of as gluing the Zariski topologies on the
Ui
∼= kn.

Definition 3.9. Let I ⊆ A = k[X0, . . . , Xn] be a homogeneous ideal. Let VP(I) := {[x0, . . . ,n ] ∈ Pn|∀ f ∈
I f(x0, . . . , xn) = 0} As I is homogeneous, it is sufficient to impose this condition for the homogeneous
elements f ∈ I. Because A is Noetherian, I can finitely generated by homogeneous elements (fi)

k
i=1 and

VP(I) =
⋂k

i=1 VP(fi) as in 3.8. Conversely, if the homogeneous fi are given, then I = ⟨f1, . . . , fk⟩A is
homogeneous.

Remark. Note that V (A) = V (A+) = ∅.

Fact. For homogeneous ideals in A and m ∈ N, we have:

• VP(
∑

λ∈Λ Iλ) =
⋂

λ∈Λ VP(Iλ)

• VP(
⋂m

k=1 Ik) = VP(
∏m

k=1 Ik) =
⋃m

k=1 VP(Ik)

• VP(
√
I) = VP(I)

Fact. If X =
⋃

λ∈Λ Uλ is an open covering of a topological space then X is Noetherian iff there is a finite
subcovering and all Uλ are Noetherian.

Proof. By definition, a topological space is Noetherian ⇐⇒ all open subsets are quasi-compact.

Corollary 3.10. The Zariski topology on Pn is indeed a topology. The induced topology on the open set
An = Pn \ VP(X0) ∼= kn is the Zariski topology on kn. The same holds for all Ui = Pn \ VP(Xi) ∼= kn.
Moreover, the topological space Pn is Noetherian.

3.1 Noetherianness of graded rings

Proposition 3.11. For a graded ring R•, the following conditions are equivalent:

A R is Noetherian.

B Every homogeneous ideal of R• is finitely generated.

C Every chain I0 ⊆ I1 ⊆ . . . of homogeneous ideals terminates.

D Every set M ̸= ∅ of homogeneous ideals has a ⊆-maximal element.

E R0 is Noetherian and the ideal R+ is finitely generated.
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F R0 is Noetherian and R/R0 is of finite type.

Proof. A =⇒ B,C,D trivial.
B ⇐⇒ C ⇐⇒ D similar to the proof about Noetherianness.
B ∧ C =⇒ E B implies that R+ is finitely generated. Since I⊕R+ is homogeneous for any homogeneous ideal
I ⊆ R0, C implies the Noetherianness of R0.
E =⇒ F Let R+ be generated by fi ∈ Rdi

, di > 0 as an ideal. The R0-subalgebra R̃ of R generated by
the fi equals R. It is sufficient to show that every homogeneous f ∈ Rd belongs to R̃. We use induction
on d. The case of d = 0 is trivial. Let d > 0 and Re ⊆ R̃ for all e < d. as f ∈ R+, f =

∑k
i=1 gifi.

Let fa =
∑k

i=1 gi,a−di
fi, where gi =

∑∞
b=0 gi,b is the decomposition into homogeneous components. Then

f =
∑∞

a=0 fa is the decomposition of f into homogeneous components, hence a ̸= d =⇒ fa = 0. Thus we may
assume gi ∈ Rd−di . As di > 0, the induction assumption may now be applied to gi, hence gi ∈ R̃, hence f ∈ R̃.
F =⇒ A Hilbert’s Basissatz (1.3)

3.2 The projective form of the Nullstellensatz and the closed subsets of Pn

Let A = k[X0, . . . , Xn].

Proposition 3.12 (Projective form of the Nullstellensatz). If I ⊆ A is a homogeneous ideal and f ∈ Ad

with d > 0, then VP(I) ⊆ VP(f) ⇐⇒ f ∈
√
I.

Proof. ⇐= is clear. Let VP(I) ⊆ VP(f). If x = (x0, . . . , xn) ∈ VA(I), then either x = 0 in which case f(x) = 0
since d > 0 or the point [x0, . . . , xn] ∈ Pn is well-defined and belongs to VP(I) ⊆ VP(f), hence f(x) = 0. Thus
VA(I) ⊆ VA(f) and f ∈

√
I be the Nullstellensatz (2.12).

Definition 3.13. a. For a graded ring R•, let Proj(R•) be the set of p ∈ SpecR such that p is a
homogeneous ideal and p ̸⊇ R+.
aThis definition is not too important, the characterization in the following remark suffices.

Remark. As the elements of A0 \ {0} are units in A it follows that for every homogeneous ideal I we have
I ⊆ A+ or I = A. In particular, Proj(A•) = {p ∈ SpecA \A+|p is homogeneous}.

Proposition 3.14. There is a bijection

f : {I ⊆ A+|I homogeneous ideal, I =
√
I} −→ {X ⊆ Pn|X closed}
I 7−→ VP(I)

⟨{f ∈ Ad|d > 0, X ⊆ VP(f)}⟩ ←− [ X

Under this bijection, the irreducible subsets correspond to the elements of Proj(A•).

Proof. From the projective form of the Nullstellensatz it follows that f is injective and that f−1(VP (I)) =
√
I =

I. If X ⊆ Pn is closed, then X = VP(J) for some homogeneous ideal J ⊆ A. W.l.o.g. J =
√
J . If J ̸⊆ A+, then

J = A (), hence X = VP(J) = ∅ = VP(A+). Thus we may assume J ⊆ A+, and f is surjective.
Suppose p ∈ Proj(A•). Then p ̸= A+ hence X = VP(p) ̸= ∅ by the proven part of the proposition. Assume

X = X1 ∪X2 is a decomposition into proper closed subsets, where Xk = VP(Ik) for some Ik ⊆ A+, Ik =
√
Ik.

Since Xk is a proper subset of X, there is fk ∈ Ik \ p. We have VP(f1f2) ⊇ VP(fk) ⊇ VP(Ik) hence VP(f1f2) ⊇
VP(I1) ∪ VP(I2) = X = VP(p) and it follows that f1f2 ∈

√
p = p .

Assume X = VP(p) is irreducible, where p =
√
p ∈ A+ is homogeneous. The p ̸= A+ as X = ∅ otherwise.

Assume that f1f2 ∈ p but fi ̸∈ Adi \ p. Then X ̸⊆ VP(fi) by the projective Nullstellensatz when di > 0 and
because VP(1) = ∅ when di = 0. Thus X = (X ∩VP (f1))∪ (X ∩VP(f2)) is a proper decomposition  . By lemma
3.16, p is a prime ideal.
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Remark. It is important that I ⊆ A+, since VP(A) = VP(A+) = ∅ would be a counterexample.

Corollary 3.15. Pn is irreducible.

Proof. Apply 3.14 to {0} ∈ Proj(A•).

3.3 Some remarks on homogeneous prime ideals

Lemma 3.16. Let R• be an I graded ring (I = N or I = Z). A homogeneous ideal I ⊆ R is a prime ideal
iff 1 ̸∈ I and for homogeneous elements f, g ∈ R, fg ∈ I =⇒ f ∈ I ∨ g ∈ I.

Proof. =⇒ is trivial. It suffices to show that for arbitrary f, g ∈ Rfg ∈ I =⇒ f ∈ I ∨ g ∈ I. Let
f =

∑
d∈I fd, g =

∑
d∈I gd be the decompositions into homogeneous components. If f ̸∈ I and g ̸∈ I there are

d, e ∈ I with fd ∈ I, ge ∈ I, and they may assumed to be maximal with this property. As I is homogeneous and
fg ∈ I, we have (fg)d+e ∈ I but

(fg)d+e = fdge +

∞∑
δ=1

(fd+δge−δ + fd−δge+δ)

where fdge ̸∈ I by our assumption on I and all other summands on the right hand side are ∈ I (as fd+δ ∈ I
and ge+δ ∈ I by the maximality of d and e), a contradiction.

Remark. If R• is N-graded and p ∈ SpecR0, then p⊕R+ = {r ∈ R|r0 ∈ p} is a homogeneous prime ideal
of R.

{p ∈ SpecR|p is a homogeneous ideal of R•} = Proj(R•) ⊔ {p⊕R+|p ∈ SpecR0}

3.4 Dimension of Pn

Proposition 3.17. • Pn is catenary.

• dim(Pn) = n. Moreover, codim({x},Pn) = n for every x ∈ Pn.

• If X ⊆ Pn is irreducible and x ∈ X, then codim({x}, X) = dim(X) = n− codim(X,Pn).

• If X ⊆ Y ⊆ Pn are irreducible subsets, then codim(X,Y ) = dim(Y )− dim(X).

Proof. Let X ⊆ Pn be irreducible. If x ∈ X, there is an integer 0 ≤ i ≤ n and X ∈ Ui = Pn \ VP(Xi). W.l.o.g.
i = 0. Then codim(X,Pn) = codim(X ∩ An,An) by the locality of Krull codimension (2.23). Applying this
with X = {x} and our results about the affine case gives the second assertion. If Y and Z are also irreducible
with X ⊆ Y ⊆ Z, then codim(X,Y ) = codim(X ∩ An, Y ∩ An), codim(X,Z) = codim(X ∩ An, Z ∩ An) and
codim(Y, Z) = codim(Y ∩ An, Z ∩ An). Thus

codim(X,Y ) + codim(Y, Z) = codim(X ∩ An, Y ∩ An) + codim(Y ∩ An, Z ∩ An)

= codim(X ∩ An, Z ∩ An)

= codim(X,Z)

because kn is catenary and the first point follows. The remaining assertions can easily be derived from the first
two.

3.5 The cone C(X)

Definition 3.18. If X ⊆ Pn is closed, we define the affine cone over X

C(X) = {0} ∪ {(x0, . . . , xn) ∈ kn+1 \ {0}|[x0, . . . , xn] ∈ X}

If X = VP(I) where I ⊆ A+ = k[X0, . . . , Xn]+ is homogeneous, then C(X) = VA(I).
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Proposition 3.19. • C(X) is irreducible iff X is irreducible or X = ∅.

• If X is irreducible, then

dim(C(X)) = dim(X) + 1 and

codim(C(X), kn+1) = codim(X,Pn)

Proof. The first assertion follows from 3.14 and 2.21 (bijection of irreducible subsets and prime ideals in the
projective and affine case).

Let d = dim(X) and
X0 ⊊ . . . ⊊ Xd = X ⊊ Xd+1 ⊊ . . . ⊊ Xn = Pn

be a chain of irreducible subsets of Pn. Then

{0} ⊊ C(X0) ⊊ . . . ⊊ C(Xd) = C(X) ⊊ . . . ⊊ C(Xn) = kn+1

is a chain of irreducible subsets of kn+1. Hence dim(C(X)) ≥ 1 + d and codim(C(X), kn+1) ≥ n − d. Since
dim(C(X)) + codim(C(X), kn+1) = dim(kn+1) = n+ 1, the two inequalities must be equalities.

3.5.1 Application to hypersurfaces in Pn

Definition 3.20 (Hypersurface). Let n > 0. By a hypersurface in Pn or An we understand an irreducible
closed subset of codimension 1.

Corollary 3.21. If P ∈ Ad is a prime element, then H = VP(P ) is a hypersurface in Pn and every
hypersurface H in Pn can be obtained in this way.

Proof. If H = VP(P ) then C(H) = VA(P ) is a hypersurface in kn+1 by 2.27. By 3.19, H is irreducible and of
codimension 1.

Conversely, let H be a hypersurface in Pn. By 3.19, C(H) is a hypersurface in kn+1, hence C(H) = VP(P )
for some prime element P ∈ A (again by 2.27). We have H = VP(p) for some p ∈ Proj(A) and C(H) = VA(p).
By the bijection between closed subsets of kn+1 and ideals I =

√
I ⊆ A (2.13), p = P · A. Let P =

∑d
k=0 Pk

with Pd ̸= 0 be the decomposition into homogeneous components. If Pe with e < d was ̸= 0, it could not be a
multiple of P contradicting the homogeneity of p = P ·A. Thus, P is homogeneous of degree d.

Definition 3.22. A hypersurface H ⊆ Pn has degree d if H = VP(P ) where P ∈ Ad is an irreducible
polynomial.

3.5.2 Application to intersections in Pn and Bezout’s theorem

Corollary 3.23. Let A ⊆ Pn and B ⊆ Pn be irreducible subsets of dimensions a and b. If a+ b ≥ n, then
A ∩B ̸= ∅ and every irreducible component of A ∩B as dimension ≥ a+ b− n.

Remark. This shows that Pn indeed fulfilled the goal of allowing for nicer results of algebraic geometry
because “solutions at infinity” to systems of algebraic equations are present in Pn (see ).

Proof. The lower bound on the dimension of irreducible components of A∩B is easily derived from the similar
affine result (corollary of the principal ideal theorem, 2.81). From the definition of the affine cone it follows that
C(A ∩ B) = C(A) ∩ C(B). We have dim(C(A)) = a + 1 and dim(C(B)) = b + 1 by 3.19. If A ∩ B = ∅, then
C(A) ∩C(B) = {0} with {0} as an irreducible component, contradicting the lower bound a+ b+ 1− n > 0 for
the dimension of irreducible components of C(A) ∩ C(B) (again 2.81).

Remark (Bezout’s theorem). If A ̸= B are hypersurfaces of degree a and b in P2, then A∩B has ab points
counted by (suitably defined) multiplicity.
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4 Varieties

4.1 Sheaves

Definition 4.1 (Sheaf). Let X be any topological space.
A presheaf G of sets (or rings, (abelian) groups) on X associates a set (or rings, or (abelian) group)
G(U) to every open subset U of X, and a map (or ring or group homomorphism) G(U)

rU,V−−−→ G(V ) to
every inclusion V ⊆ U of open subsets of X such that rU,W = rV,W rU,V for inclusions U ⊆ V ⊆W of open
subsets.

Elements of G(U) are often called sections of G on U or global sections when U = X.
Let U ⊆ X be open and U =

⋃
i∈I Ui an open covering. A family (fi)i∈I ∈

∏
i∈I G(Ui) is called

compatible if rUi,Ui∩Uj
(fi) = rUj ,Ui∩Uj

(fj) for all i, j ∈ I.
Consider the map

ϕU,(Ui)i∈I
: G(U) −→ {(fi)i∈I ∈

∏
i∈I

G(Ui)|rUi,Ui∩Uj
(fi) = rUj ,Ui∩Uj

(fj) for i, j ∈ I}

f 7−→ (rU,Ui
(f))i∈I

A presheaf is called separated if ϕU,(Ui)i∈I
is injective for all such U and (Ui)i∈I .a It satisfies gluing if

ϕU,(Ui)i∈I
is surjective.

A presheaf is called a sheaf if it is separated and satisfies gluing.
The bijectivity of the ϕU,(Ui)i∈I

is called the sheaf axiom.

aThis also called “locality”.

Trivial Nonsense†. A presheaf is a contravariant functor G : O(X)→ C whereO(X) denotes the category
of open subsets of X with inclusions as morphisms and C is the category of sets, rings or (abelian) groups.

Definition 4.2. A subsheaf G′ is defined by subsets (resp. subrings or subgroups) G′(U) ⊆ G(U) for all
open U ⊆ X such that the sheaf axioms still hold.

Remark. If G is a sheaf on X and Ω ⊆ X open, then G Ω(U) := G(U) for open U ⊆ Ω and r
(G Ω)

U,V (f) :=

r
(G)
U,V (f) is a sheaf of the same kind as G on Ω.

Remark. The notion of restriction of a sheaf to a closed subset, or of preimages under general continuous
maps, can be defined but this is a bit harder.

Notation 4.3. It is often convenient to write f V instead of rU,V (f).

Remark. Applying the sheaf axiom to the empty covering of U = ∅, one finds that G(∅) = {0}.

4.1.1 Examples of sheaves

Example. Let G be a set and let G(U) be the set of arbitrary maps U
f−→ G. We put rU,V (f) = f V . It

is easy to see that this defines a sheaf. If · is a group operation on G, then (f · g)(x) := f(x) · g(x) defines
the structure of a sheaf of group on G. Similarly, a ring structure on G can be used to define the structure
of a sheaf of rings on G.
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Example. If in the previous example G carries a topology and G(U) ⊆ G(U) is the subset (subring,
subgroup) of continuous functions U

f−→ G, then G is a subsheaf of G, called the sheaf of continuous
G-valued functions on (open subsets of) X.

Example. If X = Rn, K ∈ {R,C} and O(U) is the sheaf of K-valued C∞-functions on U , then O is a
subsheaf of the sheaf (of rings) of K-valued continuous functions on X.

Example. If X = Cn and O(U) the set of holomorphic functions on X, then O is a subsheaf of the sheaf
of C-valued C∞-functions on X.

4.1.2 The structure sheaf on a closed subset of kn

Let X ⊆ kn be open. Let R = k[X1, . . . , Xn].

Definition 4.4. For open subsets U ⊆ X, let OX(U) be the set of functions U ϕ−→ k such that every x ∈ U

has a neighbourhood V such that there are f, g ∈ R such that for y ∈ V we have g(y) ̸= 0 and ϕ(y) = f(y)
g(y) .

Remark. OX is a subsheaf (of rings) of the sheaf of k-valued functions on X. The elements of OX(U) are
continuous: Let M ⊆ k be closed. We must show the closedness of N := ϕ−1(M) in U . For M = k this
is trivial. Otherwise M is finite and we may assume M = {t} for some t ∈ k. For x ∈ U , there are open
Vx ⊆ U and fx, gx ∈ R such that ϕ = fx

gx
on Vx. Then N ∩ Vx = V (fx− t · gx)∩ Vx) is closed in Vx. As the

Vx cover U and U is quasi-compact, N is closed in U .

Proposition 4.5. Let X = V (I) where I =
√
I ⊆ R is an ideal. Let A = R/I. Then

ϕ : A −→ OX(X)

f mod I 7−→ f X

is an isomorphism.

Proof. It is easy to see that the map A → OX(X) is well-defined and a ring homomorphism. Its injectivity
follows from the Nullstellensatz and I =

√
I (2.12).

Let ϕ ∈ OX(X). for x ∈ X, there are an open subset Ux ⊆ X and fx, gx ∈ R such that ϕ = fx
gx

on Ux.
W.l.o.g. we can assume Ux = X \ V (gx). The closed subsets (X \ Ux) ⊆ kn has the form X \ Ux = V (Jx) for
some ideal Jx ⊆ R. As x ̸∈ X \ Vx there is hx ∈ Jx with hx(x) ̸= 0. Replacing Ux by X \ V (hx), fx by fxhx

and gx by gxhx, we may assume Ux = X \ V (gx). W.l.o.g. we can assume V (gx) ⊆ V (fx). Replace fx by
fxgx and gx by g2x. As X is quasi-compact, there are finitely many points (xi)

m
i=1 such that the Uxi

cover X.
Let Ui := Uxi

, fi := fxi
, gi := gxi

.
As the Ui = X \ V (gi) cover X, V (I) ∩

⋂m
i=1 V (gi) = X ∩

⋂m
i=1 V (gi) = ∅. By the Nullstellensatz (2.2) the

ideal of R generated by I and the ai equals R. There are thus n ≥ m ∈ N and elements (gi)
n
i=m+1 of I and

(ai)
n
i=1 ∈ Rn such that 1 =

∑n
i=1 aigi. Let for i > m fi := 0, F =

∑n
i=1 aifi =

∑m
i=1 aifi ∈ R.

For all x ∈ X fi(x) = ϕ(x)gi(x). If x ∈ Vi this follows by our choice of fi and gi. If x ∈ X \ Vi or i > m
both sides are zero. It follows that

ϕ(x) = ϕ(x) · 1 = ϕ(x) ·
n∑

i=1

ai(x)gi(x) =

n∑
i=1

ai(x)fi(x) = F (x)

Hence ϕ = F X .

4.1.3 The structure sheaf on closed subsets of Pn

Let X ⊆ Pn be closed and R• = k[X0, . . . , Xn] with its usual grading.
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Definition 4.6. For open U ⊆ X, let OX(U) be the set of functions U
ϕ−→ k such that for every x ∈ U ,

there are an open subset W ⊆ U , a natural number d and f, g ∈ Rd such that W ∩ VP(g) = ∅ and
ϕ(y) = f(y0,...,yn)

g(y0,...,yn)
for y = [y0, . . . , yn] ∈W .

Remark. This is a subsheaf of rings of the sheaf of k-valued functions on X. Under the identification
An = kn with Pn \VP(X0), one has OX X\VP(X0) = OX∩An as subsheaves of the sheaf of k-valued functions,
where the second sheaf is a sheaf on a closed subset of kn:

Indeed, if W is as in the definition then ϕ([1, y1, . . . , yn]) =
f(1,y1,...,yn)
g(1,y1,...,yn)

for [1, y1, . . . , yn] ∈W . Conversely

if ϕ([1, y1, . . . , yn]) =
f(y1,...,yn)
g(y1,...,yn)

on an open subset W of X ∩ An then ϕ([y0, . . . , yn]) =
F (y0,...,yn)
G(y0,...,yn)

on W

where F (X0, . . . , Xn) := Xd
0f(

X1

X0
, . . . , Xn

X0
) and G(X0, . . . , Xn) = Xd

0 g(
X1

X0
, . . . , Xn

X0
) with a sufficiently large

d ∈ N.

Remark. It follows from the previous remark and the similar result in the affine case that the elements
of OX(U) are continuous on U \V (X0). Since the situation is symmetric in the homogeneous coordinates,
they are continuous on all of U .

The following is somewhat harder than in the affine case:

Proposition 4.7. If X is connected (e.g. irreducible), then the elements of OX (X) are constant functions
on X.

4.2 The notion of a category

Definition 4.8. A category A consists of:

• A class ObA of objects of A.

• For two arbitrary objects A,B ∈ ObA, a set HomA(A,B) of morphisms for A to B in A.

• A map HomA(B,C) × HomA(A,B)
◦−→ HomA(A,C), the composition of morphisms, for arbitrary

triples (A,B,C) of objects of A.

The following conditions must be satisfied:

A For morphisms A
f−→ B

g−→ C
h−→ D, we have h ◦ (g ◦ f) = (h ◦ g) ◦ f .

B For every A ∈ Ob(A), there is an IdA ∈ HomA(A,A) such that IdA ◦ f = f (reps. g ◦ IdA = g) for
arbitrary morphisms B

f−→ A (reps. A
g−→ C).

A morphism X
f−→ Y is called an isomorphism (in A) if there is a morphism Y

g−→ X (called the
inverse f−1 of f) such that g ◦ f = IdX and f ◦ g = IdY .

Remark. • The distinction between classes and sets is important here.

• We will usually omit the composition sign ◦.

• It is easy to see that IdA is uniquely determined by the above condition B, and that the inverse f−1

of an isomorphism f is uniquely determined.

4.2.1 Examples of categories

Example. • The category of sets.

• The category of groups.

• The category of rings.
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• If R is a ring, the category of R-modules and the category AlgR of R-algebras

• The category of topological spaces

• The category Vark of varieties over k (see 4.11)

• If A is a category, then the opposite category or dual category is defined by Ob(A op) = Ob(A)
and HomA op(X,Y ) = HomA(Y,X).

In most of these cases, isomorphisms in the category were just called ‘isomorphism’. The isomorphisms
in the category of topological spaces are the homeomophisms.

4.2.2 Subcategories

Definition 4.9 (Subcategories). A subcategory of A is a category B such that Ob(B) ⊆ Ob(A), such that
HomB(X,Y ) ⊆ HomA(X,Y ) for objects X and Y of B, such that for every object X ∈ Ob(B), the identity
IdX of X is the same in B as in A, and such that for composable morphisms in B, their compositions in
A and B coincide. We call B a full subcategory of A if in addition HomB(X,Y ) = HomA(X,Y ) for
arbitrary X,Y ∈ Ob(B).

Example. • The category of abelian groups is a full subcategory of the category of groups. It can be
identified with the category of Z-modules.

• The category of finitely generated R-modules as a full subcategory of the category of R-modules.

• The category of R-algebras of finite type as a full subcategory of AlgR.

• The category of affine varieties over k as a full subcategory of the category of varieties over k.

4.2.3 Functors and equivalences of categories

Definition 4.10. A (covariant) functor (resp. contravariant functor) between categories A F−→ B is a
map Ob(A) F−→ Ob(B) with a family of maps HomA(X,Y )

F−→ HomB(F (X), F (Y )) (resp. HomA(X,Y )
F−→

HomB(F (Y ), F (X)) in the case of contravariant functors), where X and Y are arbitrary objects of A, such
that the following conditions hold:

• F (IdX) = IdF (X)

• For morphisms X
f−→ Y

g−→ Z in A, we have F (gf) = F (g)F (f) ( resp. F (gf) = F (f)F (g))

A functor is called essentially surjective if every object of B is isomorphic to an element of the image
of Ob(A) F−→ Ob(B). A functor is called full (resp. faithful) if it induces surjective (resp. injective) maps
between sets of morphisms. It is called an equivalence of categories if it is full, faithful and essentially
surjective.

Example. • There are forgetful functors from rings to abelian groups or from abelian groups to sets
which drop the multiplicative structure of a ring or the group structure of a group.

• If k is any vector space there is a contravariant functor from k-vector spaces to itself sending V to its
dual vector space V ⊆ and V

f−→ W to the dual linear map W ∗ f∗

−→ V ∗. When restricted to the full
subcategory of finite-dimensional vector spaces it becomes a contravariant self-equivalence of that
category.

• The embedding of a subcategory is a faithful functor. In the case of a full subcategory it is also full.

4.3 The category of varieties

Definition 4.11 (Algebraic variety). An algebraic variety or prevariety over k is a pair (X,OX), where
X is a topological space and OX a subsheaf of the sheaf of k-valued functions on X such that for every
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x ∈ X, there are a neighbourhood Ux of x in X, an open subset Vx of a closed subset Yx of knxa and a
homeomorphism Vx

ιx−→ Ux such that for every open subset V ⊆ Ux and every function V
f−→ k, we have

f ∈ OX(V ) ⇐⇒ ι∗x(f) ∈ OYx
(ι−1

x (V )),
In this, the pull-back ι∗x(f) of f is defined by (ι∗x(f))(ξ) := f(ιx(ξ)).
A morphism (X,OX)→ (Y,OY ) of varieties is a continuous map X

ϕ−→ Y such that for all open U ⊆ Y
and f ∈ OY (U), ϕ∗(f) ∈ OX(ϕ−1(U)). An isomorphism is a morphism such that ϕ is bijective and ϕ−1

also is a morphism of varieties.
aBy the result of 4.17 it can be assumed that Vx = Yx without altering the definition.

Example. • If (X,OX) is a variety and U ⊆ X open, then (U,OX U ) is a variety (called an open
subvariety of X), and the embedding U → X is a morphism of varieties.

• If X is a closed subset of kn or Pn, then (X,OX) is a variety, where OX is the structure sheaf on X
(4.4, reps. 4.6). A variety is called affine (resp. projective) if it is isomorphic to a variety of this
form, with X closed in kn (resp. Pn). A variety which is isomorphic to and open subvariety of X is
called quasi-affine (resp. quasi-projective).

• If X = V (X2−Y 3) ⊆ k2 then k
t 7→(t3,t2)−−−−−−→ X is a morphism which is a homeomorphism of topological

spaces but not an isomorphism of varieties.

• The composition of two morphisms X → Y → Z of varieties is a morphism of varieties.

• X
IdX−−→ X is a morphism of varieties.

4.3.1 The category of affine varieties

Lemma 4.12. Let X be any k-variety and U ⊆ X open.

i) All elements of OX(U) are continuous.

ii) If U ⊆ X is open, U λ−→ k any function and every x ∈ U has a neighbourhood Vx ⊆ U such that
λ Vx

∈ OX(Vx), then λ ∈ OX(U).

iii) If ϑ ∈ OX(U) and ϑ(x) ̸= 0 for all x ∈ U , then ϑ ∈ OX(U)×.

Proof. i) The property is local on U , hence it is sufficient to show it in the quasi-affine case. This was done
in .

ii) For the second part, let λx := λ Vx
. We have λx Vx∩Vy

= λ Vx∩Vy
= λy Vx∩Vy

. The Vx cover U . By the
sheaf axiom for OX there is ℓ ∈ OX(U) with ℓ Vx

= λx. It follows that ℓ = λ.

iii) By the definition of variety, every x ∈ U has a quasi-affine neighbourhood V ⊆ U . We can assume U to
be quasi-affine and X = V (I) ⊆ kn, as the general assertion follows by an application of ii). If x ∈ U there
are a neighbourhood x ∈ W ⊆ U and a, b ∈ R = k[X1, . . . , Xn] such that ϑ(y) = a(y)

b(y) for y ∈ W , with
b(y) ̸= 0. Then a(x) ̸= 0 as ϑ(x) ̸= 0. Replacing W by W \ V (a), we may assume that a has no zeroes on
W . Then λ(y) = b(y)

a(y) for y ∈ W has a non-vanishing denominator and λ ∈ OX(U). We have λ · ϑ = 1,
thus ϑ ∈ OX(U)×.

Proposition 4.13 (About affine varieties). • Let X,Y be varieties over k. Then the map

ϕ : HomVark(X,Y ) −→ HomAlgk
(OY (Y ),OX(X))

(X
f−→ Y ) 7−→ (OY (Y )

f∗

−→ OX(X))

is injective when Y is quasi-affine and bijective when Y is affine.
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• The contravariant functor

F : Vark −→ Algk

X 7−→ OX(X)

(X
f−→ Y ) 7−→ (OX(X)

f∗

−→ OY (Y ))

restricts to an equivalence of categories between the category of affine varieties over k and the full
subcategory A of Algk, having the k-algebras A of finite type with nilA = {0} as objects.

Remark. It is clear that nil(OX(X)) = {0} for arbitrary varieties. For general varieties it is however not
true that OX(X) is a k-algebra of finite type. There are counterexamples even for quasi-affine X.

If, however, X is affine, we may assume w.l.o.g. that X = V (I) where I =
√
I ⊆ R is an ideal with

R = k[X1, . . . , Xn]. Then OX(X) ∼= R/I (see 4.5) is a k-algebra of finite type.

Proof. It suffices to investigate ϕ when Y is an open subset of V (I) ⊆ kn, where I =
√
I ⊆ R is an ideal and

Y = V (I) when Y is affine. Let (f1, . . . , fn) be the components of X
f−→ Y ⊆ kn. Let Y

ξi−→ k be the i-th

coordinate. By definition fi = f∗(ξi). Thus f is uniquely determined by OY (Y )
f∗

−→ OX(X). Conversely, let

Y = V (I) and OY (Y )
ϕ−→ OX(X) be a morphism of k-algebras. Define fi := ϕ(ξi) and consider X

f=(f1,...,fn)−−−−−−−−→
Y ⊆ kn. f has image contained in Y . For x ∈ X,λ ∈ I we have λ(f(x)) = (ϕ(λ mod I))(x) = 0 as ϕ
is a morphism of k-algebras. Thus f(x) ∈ V (I) = Y . f is a morphism in Vark For open Ω ⊆ Y,U =
f−1(Ω) = {x ∈ X|∀ λ ∈ J (ϕ(λ))(x) ̸= 0} is open in X, where Y \ Ω = V (J). If λ ∈ OY (Ω) and x ∈ U , then
f(x) has a neighbourhood V such that there are a, b ∈ R with λ(v) = a(v)

b(v) and b(v) ̸= 0 for all v ∈ V . Let
W := f−1(V ). Then α := ϕ(a) W ∈ OX(W ), β := ϕ(b) W ∈ OX(W ). By the second part of 4.12 β ∈ OX(W )×

and f∗(λ) W = α
β ∈ OX(W ). The first part of 4.12 shows that f∗(λ) ∈ OX(U). By definition of f , we have

f∗ = ϕ. This finished the proof of the first point.
The functor in the second part maps affine varieties to objects of A and is essentially surjective. It follows

from the remark that the functor maps affine varieties to objects of A.
If A ∈ Ob(A) then A/k is of finite type, thus A ∼= R/I for some n. Since nil(A) = {0} we have I =

√
I, as for

x ∈
√
I, x mod I ∈ nil(R/I) ∼= nil(A) = {0}. Thus A ∼= OX(X) where X = V (I). Fullness and faithfulness

of the functor follow from the first point.

Remark. Note that giving a contravariant functor C → D is equivalent to giving a functor C → D op.
We have thus shown that the category of affine varieties is equivalent to A op, where A ⊊ Algk is the full
subcategory of k-algebras A of finite type with nil(A) = {0}.

4.3.2 Affine open subsets are a topology base

Definition 4.14. A set B of open subsets of a topological space X is called a topology base for X if
every open subset of X can be written as a (possibly empty) union of elements of B.

Fact. If X is a set, then B ⊆ P(X) is a base for some topology on X iff X =
⋃

U∈B U and for arbitrary
U, V ∈ B, U ∩ V is a union of elements of B.

Definition 4.15. Let X be a variety. An affine open subset of X is a subset which is an affine variety.

Proposition 4.16. Let X be an affine variety over k, λ ∈ OX(X) and U = X \ V (λ). Then U is an affine

variety and the morphism ϕ : OX(X)λ → OX(U) defined by the restriction OX(X)
·|U−−→ OX(U) and the

universal property of the localization is an isomorphism.

Proof. Let X be an affine variety over k, λ ∈ OX(X) and U = X \ V (λ). The fact that λ U ∈ Ox(U)× follows

from 4.12. Thus the universal property of the localization OX(X)λ can be applied to OX(X)
·|U−−→ OX(U).
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OX(X) OX(X)λ

OX(U)

·|U

x 7→ x
1

∃! ϕ

Y OY (Y ) ∼= Aλ

X U OX(U)

π0

π
sσ

For the rest of the proof, we may assume X = V (I) ⊆ kn where I =
√
I ⊆ R := k[X1, . . . , Xn] is an ideal. Then

A := OX(X) ∼= R/I and there is ℓ ∈ R such that ℓ X = λ. Let Y = V (J) ⊆ kn+1 where J ⊆ k[Z,X1, . . . , Xn] is
generated by the elements of I and 1− Zℓ(X1, . . . , Xn).

Then OY (Y ) ∼= k[Z,X1, . . . , Xn]/J ∼= A[Z]/(1− λZ) ∼= Aλ. By the proposition about affine varieties (4.13),
the morphism s : OY (Y ) ∼= Aλ → OX(U) corresponds to a morphism U

σ−→ Y . We have s(Z mod J) = λ−1 and
s(Xi mod J) = Xi mod I. Thus σ(x) = (λ(x)−1, x) for x ∈ U . Moreover, the projection Y

π0−→ X dropping
the Z-coordinate has image contained in U , as for (z, x) ∈ Y the equation

1 = zλ(x)

implies λ(x) ̸= 0. It thus defines a morphism Y
π−→ U and by the description of σ it follows that σπ = IdU .

Similarly it follows that σπ = IdY . Thus, σ and π are inverse to each other.

Corollary 4.17. The affine open subsets of a variety X are a topology base on X.

Proof. Let X = V (I) ⊆ kn with I =
√
I. If U ⊆ X is open then X \ U = V (J) with J ⊇ I and U =⋃

f∈J(X \ V (f)). Thus U is a union of affine open subsets. The same then holds for arbitrary quasi-affine
varieties.

Let X be any variety, U ⊆ X open and x ∈ U . By the definition of variety, x has a neighbourhood Vx which
is quasi-affine, and replacing Vx by U ∩ Vx which is also quasi-affine we may assume Vx ⊆ U . Vx is a union of
its affine open subsets. Because U is the union of the Vx, U as well is a union of affine open subsets.

4.4 Stalks of sheaves

Definition 4.18 (Stalk). Let G be a presheaf of sets on the topological space X, and let x ∈ X. The stalk
(Halm) of G at x is the set of equivalence classes of pairs (U, γ), where U is an open neighbourhood of x
and γ ∈ G(U) and the equivalence relation ∼ is defined as follows: (U, γ) ∼ (V, δ) iff there exists an open
neighbourhood W ⊆ U ∩ V of x such that γ W = δ W .

If G is a presheaf of groups, one can define a groups structure on Gx by

((U, γ)/ ∼) · ((V, δ)/ ∼) = (U ∩ V, γ U∩V · δ U∩V )/ ∼

If G is a presheaf of rings, one can similarly define a ring structure on Gx.
If U is an open neighbourhood of x ∈ X, then we have a map (resp. homomorphism)

·x : G(U) −→ Gx
γ 7−→ γx := (U, γ)/ ∼

Fact. Let γ, δ ∈ G(U). If G is a sheafa and if for all x ∈ U , we have γx = δx, then γ = δ.

In the case of a sheaf, the image of the injective map G(U)
γ 7→(γx)x∈U−−−−−−−→

∏
x∈U Gx is the set of all

(gx)x∈U ∈
∏

x∈U Gx satisfying the following coherence condition: For every x ∈ U , there are an open
neighbourhood Wx ⊆ U of x and g(x) ∈ G(Wx) with g

(x)
y = gy for all y ∈Wx.

aor, more generally, a separated presheaf

Proof. Because of γx = δx, there is x ∈ Wx ⊆ U open such that γ Wx
= δ Wx

. As the Wx cover U , γ = δ by
the sheaf axiom.

Definition 4.19. Let G be a sheaf of functions. Then γx is called the germ of the function γ at x. The
value at x of g = (U, γ)/ ∼∈ Gx defined as g(x) := γ(x), which is independent of the choice of the
representative γ.
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Remark. If G is a sheaf of C∞-functions (resp. holomorphic functions), then Gx is called the ring of germs
of C∞-functions (resp. of holomorphic functions) at x.

4.4.1 The local ring of an affine variety

Definition 4.20. If X is a variety, the stalk OX,x of the structure sheaf at x is called the local ring of X
at x. This is indeed a local ring, with maximal ideal mx = {f ∈ OX,x|f(x) = 0}.

Proof. By 2.52 it suffices to show that mx is a proper ideal, which is trivial, and that the elements of OX,x \mx

are units in OX,x. Let g = (U, γ)/ ∼∈ OX,x and g(x) ̸= 0. γ is Zariski continuous (first point of 4.12). Thus
V (γ) is closed. By replacing U by U \ V (γ) we may assume that γ vanishes nowhere on U . By the third point
of 4.12 we have γ ∈ OX(U)×. (γ−1)x is an inverse to g.

Proposition 4.21. Let X = VA(I) ⊆ kn be equipped with its usual structure sheaf, where I =
√
I ⊆ R =

k[X1, . . . , Xn] . Let x ∈ X and A = OX(X) ∼= R/I. {P ∈ R|P (x) = 0} :=nx ⊆ R is maximal, I ⊆ nx and
mx := nx/I is the maximal ideal of elements of A vanishing at x. If λ ∈ A \mx, we have λx ∈ O×

X,x, where
λx denotes the image under A ∼= OX(X) → OX,x. By the universal property of the localization, there
exists a unique ring homomorphism Amx

ι−→ OX,x such that

A Amx

OX,x

λ7→λx

∃! ι

commutes.
The morphism Amx

ι−→ OX,x is an isomorphism.

Proof. To show surjectivity, let ℓ = (U, λ)/ ∼∈ OX,x, where U is an open neighbourhood of x in X. We have
X \ U = V (J) where J ⊆ A is an ideal. As x ∈ U there is f ∈ J with f(x) ̸= 0. Replacing U by X \ V (f)
we may assume U = X \ V (f). By 4.16, OX(U) ∼= Af , and λ = f−nϑ for some n ∈ N and ϑ ∈ A. Then
ℓ = ι(f−nϑ) where the last fraction is taken in Amx

.
Let λ = ϑ

g ∈ Amx
with ι(λ) = 0. It is easy to see that ι(λ) = (X \ V (g), ϑ

g )/ ∼. Thus there is an open
neighbourhood U of x in X \ V (g) such that ϑ vanishes on U . Similar as before there is h ∈ A with h(x) ̸= 0
and W = X \ V (h) ⊆ U . By the isomorphism OX(W ) ∼= Ah, there is n ∈ N with hnϑ = 0 in A. Since h ̸∈ mx,
h is a unit and the image of ϑ in Amx

vanishes, implying λ = 0.

4.4.2 Intersection multiplicities and Bezout’s theorem

Definition 4.22. Let R = k[X0, X1, X2] equipped with its usual grading and let x ∈ P2. Let G ∈
Rg, H ∈ Rh be homogeneous polynomials with x ∈ V (G) ∩ V (h). Let ℓ ∈ R1 such that ℓ(x) ̸= 0.
Then x ∈ U = P2 \ V (ℓ) and the rational functions γ = ℓ−gG, η = ℓ−hH are elements of OP2(U). Let
Ix(G,H) ⊆ OP2,x denote the ideal generated by γx and ηx.
The dimension dimk(OX,x/Ix(G,H)) :=ix(G,H) is called the intersection multiplicity of G and H at x.

Remark. If ℓ̃ ∈ R1 also satisfies ℓ̃(x) ̸= 0, then the image of ℓ̃/ℓ under OP2(U)→ OP2,x is a unit, showing
that the image of γ̃ = ℓ̃−gG in OP2,x is multiplicatively equivalent to γx, and similarly for ηx. Thus
Ix(G,H) does not depend on the choice of ℓ ∈ R1 with ℓ(x) ̸= 0.

Theorem 4.23 (Bezout’s theorem). In the above situation, assume that V (H) and V (G) intersect properly
in the sense that V (G) ∩ V (H) ⊆ P2 has no irreducible component of dimension ≥ 1. Then∑

x∈V (G)∩V (H)

ix(G,H) = gh
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Thus, V (G) ∩ V (H) has gh elements counted by multiplicity.

47/48



Index

Affine cone over X, 37
Affine open subset, 44
Algebra

finite over, 4
generated subalgebra, 4
integral, 5
of finite type, 4

Algebraic number field, 25
Algebraic variety, 42
Augmentation ideal, 33

Base, 15

Category, 41
Coherence condition, 45

Degree d, 38
Domain

integrally closed, 25
normal, 25

Dual category, 42

Equivalence of categories, 42

Field of rational functions, 17
Fixed field , 25
Full subcategory, 42
Functor

contravariant, 42
covariant, 42
essentially surjective, 42
faithful, 42
forgetful, 42
full, 42

Generating subset, 15
Germ, 45

value at x, 45
Global sections, 39
Gluing, 39
Going-down, 22
Going-up, 22
Graded ring, 33

Height of a prime ideal, 27
Homogeneous, 33
Homogeneous components, 33
Homogeneous coordinates, 33
Homogeneous of degree d, 34
Hull operator, 15
Hypersurface, 38

Ideal
S-saturation, 19
S-saturated, 19
zero, 7

Independent subset, 15
Infinite hyperplane, 33
Integral closure, 5, 25
Integral over, 5
Intersection multiplicity, 46

Inverse morphism, 41
Irreducible component, 12
Isomorphism, 41

Jacobson radical, 32

Local ring, 21, 46
Localization, 22

Matroidal, 15
Module

generated by subset S, 3
Submodule, 3

Morphism, 41
Multiplicative subset, 18

Nil radical, 30
Noetherian, 3, 10
Noetherian induction, 13
Normal, 24

Objects, 41
Open subvariety, 43
Opposite category, 42

Presheaf, 39
separated, 39

Prevariety, 42
Primeideal

lies above, 22
Projective space, 33
Pull-back, 43

Residue field, 20
Ring of integers in an ANF, 25

Sections, 39
compatible, 39

Sheaf, 39
Sheaf axiom, 39
Stalk, 45
Subcategory, 42

Topological space
catenary, 14
compact, 10
irreducible, 11, 12
quasi-compact, 10

Topology base, 44
Transcendence base, 16
Transcendence degree, 16

Universal property, 18

Variety
affine, 43
projective, 43
quasi-affine, 43
quasi-projective, 43

Zariski-Topology, 10, 18

48/48


	Finiteness conditions
	Finitely generated and Noetherian modules
	Properties of finite generation and Noetherianness

	Ring extensions of finite type
	Finite ring extensions
	Determinants and Caley-Hamilton
	Integral elements and integral ring extensions
	Finiteness, finite generation and integrality
	Noether normalization theorem

	The Nullstellensatz and the Zariski topology
	The Nullstellensatz
	Nullstellensatz for uncountable fields

	The Zariski topology
	Operations on ideals and V(I)
	Definition of the Zariski topology
	Separation properties of topological spaces
	Compactness properties of topological spaces

	Another form of the Nullstellensatz and Noetherianness of kn
	Irreducible spaces
	Irreducible components
	Decomposition into irreducible subsets

	Krull dimension
	Krull dimension of kn

	Transcendence degree
	Matroids
	Transcendence degree

	Inheritance of Noetherianness and of finite type by subrings and subalgebras / Artin-Tate
	Artin-Tate proof of the Nullstellensatz

	Transcendence degree and Krull dimension
	The spectrum of a ring
	Localization of rings
	A first result of dimension theory
	Local rings
	Localization at a prime ideal

	Going-up and going-down
	Going-up for integral ring extensions
	Application to dimension theory: Proof of dim Y = trdeg(K(Y) / k)
	Prime avoidance
	The fixed field of the automorphism group of a normal field extension
	Integral closure and normal domains
	Action of Aut(L / K) on prime ideals of a normal ring extension
	A going-down theorem
	Proof of codim({y},Y) = trdeg(K(Y) /k)

	The height of a prime ideal
	The relation between ht(p) and trdeg

	Dimension of products
	The nil radical
	Closed subsets of Spec R

	The principal ideal theorem
	Application to the dimension of intersections
	Application to the property of being a UFD

	The Jacobson radical

	Projective spaces
	Graded rings and homogeneous ideals
	The Zariski topology on Pn
	Noetherianness of graded rings
	The projective form of the Nullstellensatz and the closed subsets of Pn
	Some remarks on homogeneous prime ideals
	Dimension of Pn
	The cone C(X)
	Application to hypersurfaces in Pn
	Application to intersections in Pn and Bezout's theorem


	Varieties
	Sheaves
	Examples of sheaves
	The structure sheaf on a closed subset of kn
	The structure sheaf on closed subsets of Pn

	The notion of a category
	Examples of categories
	Subcategories
	Functors and equivalences of categories

	The category of varieties
	The category of affine varieties
	Affine open subsets are a topology base

	Stalks of sheaves
	The local ring of an affine variety
	Intersection multiplicities and Bezout's theorem


	Index

