Merge branch 'main' of https://git.jrpie.de/jrpie-notes/logic-3-abstract-topological-dynamics-and-descriptive-set-theory
This commit is contained in:
commit
b636d722d4
3 changed files with 76 additions and 5 deletions
|
@ -4,7 +4,7 @@ in the summer term 2023 at the University Münster.
|
|||
|
||||
\begin{warning}
|
||||
This is not an official script.
|
||||
The official lecture notes can be found on
|
||||
The official lecture notes can be found
|
||||
\href{https://sites.google.com/site/akwiatkmath/teaching/logic-3-abstract-topological-dynamics-and-descriptive-set-theory}{here}.
|
||||
\end{warning}
|
||||
|
||||
|
|
|
@ -42,14 +42,14 @@ Recall the following notions:
|
|||
and $U_i \subsetneq X_i$ for only finitely many $i$.
|
||||
\end{definition}
|
||||
\begin{fact}
|
||||
Countable products of separable spaces are separable,
|
||||
Countable products of separable spaces are separable.
|
||||
\end{fact}
|
||||
\begin{definition}
|
||||
A topological space $X$ is \vocab{second countable},
|
||||
if it has a countable base.
|
||||
\end{definition}
|
||||
If $X$ is a topological space.
|
||||
Then if $X$ is second countable, it is also separable.
|
||||
Let $X$ be a topological space.
|
||||
If $X$ is second countable, it is also separable.
|
||||
However the converse of this does not hold.
|
||||
|
||||
\begin{example}
|
||||
|
@ -81,7 +81,8 @@ However the converse of this does not hold.
|
|||
For a metric space, the following are equivalent:
|
||||
\begin{itemize}
|
||||
\item compact,
|
||||
\item \vocab{sequentially compact} (every sequence has a convergent subsequence),
|
||||
\item \vocab{sequentially compact}
|
||||
(every sequence has a convergent subsequence),
|
||||
\item complete and \vocab{totally bounded}
|
||||
(for all $\epsilon > 0$ we can cover the space with finitely many $\epsilon$-balls).
|
||||
\end{itemize}
|
||||
|
|
70
inputs/tutorial_01.tex
Normal file
70
inputs/tutorial_01.tex
Normal file
|
@ -0,0 +1,70 @@
|
|||
\tutorial{01}{202-10-17}{}
|
||||
|
||||
% TODO MAIL
|
||||
|
||||
\begin{fact}
|
||||
A countable product of separable spaces $(X_n)_{n \in \N}$ is separable.
|
||||
\end{fact}
|
||||
\begin{proof}
|
||||
Choose a countable dense subset $D_n \subseteq X_n$
|
||||
Fix some point $(a_1,a_2,\ldots) \in \prod_n X_n$
|
||||
and consider $\bigcup_{i \in \N} \prod_{n \le i} D_n \times \prod_{n > i} \{a_n\}$.
|
||||
\end{proof}
|
||||
|
||||
\begin{fact}
|
||||
\begin{itemize}
|
||||
\item Let $X$ be a topological space.
|
||||
Then $X$ 2nd countable $\implies$ X separable.
|
||||
\item If $X$ is a metric space and separable,
|
||||
then $X$ is 2nd countable.
|
||||
\end{itemize}
|
||||
\end{fact}
|
||||
\begin{proof}
|
||||
For the first point, choose some point from every basic open set.
|
||||
|
||||
For the second point consider balls of rational radius
|
||||
around the points of a countable dense subset.
|
||||
\end{proof}
|
||||
|
||||
\begin{definition}
|
||||
A topological space is \vocab{Lindelöf}
|
||||
if every open cover has a countable subcover.
|
||||
\end{definition}
|
||||
\begin{fact}
|
||||
Let $X$ be a metric space.
|
||||
If $X$ is Lindelöf,
|
||||
then it is 2nd countable.
|
||||
\end{fact}
|
||||
\begin{proof}
|
||||
For all $q \in \Q$
|
||||
Consider the cover $B_q(x), x \in X$
|
||||
and choose a countable subcover.
|
||||
The union of these subcovers is
|
||||
a countable base.
|
||||
\end{proof}
|
||||
\begin{fact}
|
||||
Let $X$ be a topological space.
|
||||
If $X$ is 2nd countable,
|
||||
then it is Lindelöff.
|
||||
\end{fact}
|
||||
\begin{proof}
|
||||
Let $A_0, A_1,\ldots$
|
||||
be a countable base.
|
||||
|
||||
Let $\{U_i\}_{i \in I}$
|
||||
be a cover.
|
||||
Consider $J \coloneqq \{j : \exists i \in I.~A_j \in U_i\}$.
|
||||
For every $j \in J$ choose a $U_i$ such that
|
||||
$A_j \subseteq U_j$.
|
||||
Let $I' \subseteq I$ be the subset of chosen indices.
|
||||
Then $\{U_i\}_{i \in I'}$ is a countable subcover.
|
||||
\end{proof}
|
||||
\begin{remark}
|
||||
For metric spaces the notions
|
||||
of being 2nd countable, separable
|
||||
and Lindelöf coincide.
|
||||
|
||||
In arbitrary topological spaces,
|
||||
Lindelöf is the strongest of these notions.
|
||||
|
||||
\end{remark}
|
Reference in a new issue