lecture 13 part 2
This commit is contained in:
parent
ee61e963c1
commit
0930ed6c95
2 changed files with 152 additions and 1 deletions
|
@ -40,7 +40,7 @@ if $X_1, X_2,\ldots$ are i.i.d.~with $ \mu = \bE[X_1]$,
|
||||||
The Lyapunov condition implies the Lindeberg condition.
|
The Lyapunov condition implies the Lindeberg condition.
|
||||||
(Exercise).
|
(Exercise).
|
||||||
\end{remark}
|
\end{remark}
|
||||||
We will not prove the \autoref{linebergclt} or \autoref{lyapunovclt}
|
We will not prove the \autoref{lindebergclt} or \autoref{lyapunovclt}
|
||||||
in this lecture. However, they are quite important.
|
in this lecture. However, they are quite important.
|
||||||
|
|
||||||
We will now sketch the proof of \autoref{levycontinuity},
|
We will now sketch the proof of \autoref{levycontinuity},
|
||||||
|
@ -106,4 +106,154 @@ A generalized version of \autoref{levycontinuity} is the following:
|
||||||
Exercise: $\phi_{S_n}(t) = e^{-|t|} = \phi_{C_1}(t)$, thus $S_n \sim C$.
|
Exercise: $\phi_{S_n}(t) = e^{-|t|} = \phi_{C_1}(t)$, thus $S_n \sim C$.
|
||||||
\end{example}
|
\end{example}
|
||||||
|
|
||||||
|
We will prove \autoref{levycontinuity} assuming
|
||||||
|
\autoref{lec10_thm1}.
|
||||||
|
\autoref{lec10_thm1} will be shown in the notes.\todo{TODO}
|
||||||
|
We will need the following:
|
||||||
|
\begin{lemma}
|
||||||
|
\label{lec13_lem1}
|
||||||
|
Given a sequence $(F_n)_n$ of probability distribution functions,
|
||||||
|
there is a subsequence $(F_{n_k})_k$ of $F_n$
|
||||||
|
and a right continuous, non-decreasing function $F$,
|
||||||
|
such that $F_{n_k} \to F$ at all continuity points of $F$.
|
||||||
|
(We do not yet claim, that $F$ is a probability distribution function,
|
||||||
|
as we ignore $\lim_{x \to \infty} F(x)$ and $\lim_{x \to -\infty} F(x)$ for now).
|
||||||
|
\end{lemma}
|
||||||
|
\begin{lemma}
|
||||||
|
\label{s7e1}
|
||||||
|
Let $\mu \in M_1(\R)$, $A > 0$ and $\phi$ the characteristic function of $\mu$.
|
||||||
|
Then $\mu\left( (-A,A) \right) \ge \frac{A}{2} \left| \int_{-\frac{2}{A}}^{\frac{2}{A}} \phi(t) d t \right| - 1$.
|
||||||
|
\end{lemma}
|
||||||
|
\begin{refproof}{s7e1}
|
||||||
|
Exercise.\todo{TODO}
|
||||||
|
\end{refproof}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\begin{refproof}{levycontinuity}
|
||||||
|
``$\implies$ '' If $\mu_n \implies \mu$, then
|
||||||
|
$\int f d \mu_n \to \int f d \mu$
|
||||||
|
for all $f \in C_b$ and $x \to e^{\i t x}$ is continuous and bounded.
|
||||||
|
|
||||||
|
|
||||||
|
``$ \impliedby$''
|
||||||
|
|
||||||
|
% Step 1:
|
||||||
|
\begin{claim}
|
||||||
|
\label{levyproofc1}
|
||||||
|
Given $\epsilon > 0$ there exists $A > 0$ such that
|
||||||
|
$\liminf_n \mu_n\left( (-A,A) \right) \ge 1 - 2 \epsilon$.
|
||||||
|
\end{claim}
|
||||||
|
\begin{refproof}{levyproofc1}
|
||||||
|
If $f$ is continuous, then
|
||||||
|
\[
|
||||||
|
\frac{1}{\eta} \int_{x - \eta}^{x + \eta} f(t) d t \xrightarrow{\eta \downarrow 0} f(x).
|
||||||
|
\]
|
||||||
|
Applying this to $\phi$ at $t = 0$, one obtains:
|
||||||
|
\begin{equation}
|
||||||
|
\left| \frac{A}{4} \int_{-\frac{2}{A}}^{\frac{2}{A}} \phi(t) dt - 1 \right| < \frac{\epsilon}{2}
|
||||||
|
\label{levyproofc1eqn1}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\begin{claim}
|
||||||
|
For $n$ large enough, we have
|
||||||
|
\begin{equation}
|
||||||
|
\left| \frac{A}{4} \int_{-\frac{2}{A}}^{\frac{2}{A}} \phi_n(t) d t - 1\right| < \epsilon.
|
||||||
|
\label{levyproofc1eqn2}
|
||||||
|
\end{equation}
|
||||||
|
\end{claim}
|
||||||
|
\begin{subproof}
|
||||||
|
Apply dominated convergence.
|
||||||
|
\end{subproof}
|
||||||
|
So to prove $\mu_n\left( (-A,A) \right) \ge 1 - 2 \epsilon$,
|
||||||
|
apply \autoref{s7e1}.
|
||||||
|
It suffices to show that
|
||||||
|
\[
|
||||||
|
\frac{A}{2} \left| \int_{-\frac{2}{A}}^{\frac{2}{A}} \phi_n(t) dt\right| - 1 \ge 1 - 2\epsilon
|
||||||
|
\]
|
||||||
|
or
|
||||||
|
\[
|
||||||
|
1 - \frac{A}{4} \left|\int_{-\frac{2}{A}}^{\frac{2}{A}} \phi_n(t) dt \right| \le \epsilon,
|
||||||
|
\]
|
||||||
|
which follows from \autoref{levyproofc1eqn2}.
|
||||||
|
\end{refproof}
|
||||||
|
|
||||||
|
% Step 2
|
||||||
|
By \autoref{lec13_lem1}
|
||||||
|
there exists a right continuous, non-decreasing $F $
|
||||||
|
and a subsequence $(F_{n_k})_k$ of $(F_n)_n$ where $F_n$ is
|
||||||
|
the probability distribution function of $\mu_n$,
|
||||||
|
such that $F_{n_k}(x) \to F(x)$ for all $x$ where $F$ is continuous.
|
||||||
|
\begin{claim}
|
||||||
|
\[
|
||||||
|
\lim_{n \to -\infty} F(x) = 0
|
||||||
|
\]
|
||||||
|
and
|
||||||
|
\[
|
||||||
|
\lim_{n \to \infty} F(x) = 1,
|
||||||
|
\]
|
||||||
|
i.e.~$F$ is a probability distribution function.\footnote{This does not hold in general!}
|
||||||
|
\end{claim}
|
||||||
|
\begin{subproof}
|
||||||
|
We have
|
||||||
|
\[
|
||||||
|
\mu_{n_k}\left( (- \infty, x] \right) = F_{n_k}(x) \to F(x).
|
||||||
|
\]
|
||||||
|
Again, given $\epsilon > 0$, there exists $A > 0$, such that
|
||||||
|
$\mu_{n_k}\left( (-A,A) \right) > 1 - 2 \epsilon$ (\autoref{levyproofc1}).
|
||||||
|
|
||||||
|
Hence $F(x) \ge 1 - 2 \epsilon$ for $x > A $
|
||||||
|
and $F(x) \le 2\epsilon$ for $x < -A$.
|
||||||
|
This proves the claim.
|
||||||
|
\end{subproof}
|
||||||
|
|
||||||
|
Since $F$ is a probability distribution function, there exists
|
||||||
|
a probability measure $\nu$ on $\R$ such that $F$ is the distribution
|
||||||
|
function of $\nu$.
|
||||||
|
Since $F_{n_k}(x) \to F_n(x)$ at all continuity points $x$ of $F$.
|
||||||
|
By \autoref{lec10_thm1} we obtain that
|
||||||
|
$\mu_{n_k} \overset{k \to \infty}{\implies} \nu$.
|
||||||
|
Hence
|
||||||
|
$\phi_{\mu_{n_k}}(t) \to \phi_\nu(t)$, by the other direction of that theorem.
|
||||||
|
But by assumption,
|
||||||
|
$\phi_{\mu_{n_k}}(\cdot ) \to \phi_n(\cdot )$ so $\phi_{\mu}(\cdot) = \phi_{\nu}(\cdot )$.
|
||||||
|
By \autoref{charfuncuniqueness}, we get $\mu = \nu$.
|
||||||
|
|
||||||
|
We have shown, that $\mu_{n_k} \implies \mu$ along a subsequence.
|
||||||
|
We still need to show that $\mu_n \implies \mu$.
|
||||||
|
\begin{fact}
|
||||||
|
Suppose $a_n$ is a bounded sequence in $\R$,
|
||||||
|
such that any subsequence converges to $a \in \R$.
|
||||||
|
Then $a_n \to a$.
|
||||||
|
\end{fact}
|
||||||
|
\begin{subproof}
|
||||||
|
\todo{in the notes}
|
||||||
|
\end{subproof}
|
||||||
|
Assume $\mu_n$ does not converge to $\mu$.
|
||||||
|
By \autoref{lec10_thm1}, pick a continuity point $x_0$ of $F$,
|
||||||
|
such that $F_n(x_0) \not\to F(x_0)$.
|
||||||
|
Pick $\delta > 0$ and a subsequence $F_{n_1}(x_0), F_{n_2}(x_0), \ldots$
|
||||||
|
which are all outside $(F(x_0) - \delta, F(x_0) + \delta)$.
|
||||||
|
Then $\phi_{n_1}, \phi_{n_2}, \ldots \to \phi$.
|
||||||
|
Now, there exists a further subsequence $G_1, G_2, \ldots$ of $F_{n_i}$,
|
||||||
|
which converges.
|
||||||
|
$G_1, G_2, \ldots$ is a subsequence of $F_1, F_2,\ldots$.
|
||||||
|
However $G_1, G_2, \ldots$ is not converging to $F$,
|
||||||
|
as this would fail at $x_0$. This is a contradiction.
|
||||||
|
|
||||||
|
\end{refproof}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
% IID is over now
|
||||||
|
\subsection{Summary}
|
||||||
|
What did we learn:
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
\item How to construct product measures
|
||||||
|
\item WLLN and SLLN
|
||||||
|
\item Kolmogorov's three series theorem
|
||||||
|
\item Fourier transform, weak convergence and CLT
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -36,6 +36,7 @@
|
||||||
\input{inputs/lecture_10.tex}
|
\input{inputs/lecture_10.tex}
|
||||||
\input{inputs/lecture_11.tex}
|
\input{inputs/lecture_11.tex}
|
||||||
\input{inputs/lecture_12.tex}
|
\input{inputs/lecture_12.tex}
|
||||||
|
\input{inputs/lecture_13.tex}
|
||||||
|
|
||||||
\cleardoublepage
|
\cleardoublepage
|
||||||
|
|
||||||
|
|
Reference in a new issue