better proof of convergence in L^1 => convergence in measure

This commit is contained in:
Josia Pietsch 2023-07-13 16:31:28 +02:00
parent 508cfc2590
commit 0cb24cfe5f
Signed by untrusted user who does not match committer: jrpie
GPG key ID: E70B571D66986A2D

View file

@ -46,6 +46,7 @@ from the lecture on stochastic.
\end{definition} \end{definition}
% TODO Connect to AnaIII % TODO Connect to AnaIII
\pagebreak
\begin{theorem}+ \begin{theorem}+
\label{thm:convergenceimplications} \label{thm:convergenceimplications}
\vspace{10pt} \vspace{10pt}
@ -109,20 +110,14 @@ from the lecture on stochastic.
$X_n \xrightarrow{L^1} X \implies X_n\xrightarrow{\bP} X$ $X_n \xrightarrow{L^1} X \implies X_n\xrightarrow{\bP} X$
\end{claim} \end{claim}
\begin{subproof} \begin{subproof}
Let $\bE[|X_n - X|] \to 0$. Suppose $\bE[|X_n - X|] \to 0$.
Suppose there exists an $\epsilon > 0$ such that Then for every $\epsilon > 0$
$\limsup\limits_{n \to \infty} \bP[|X_n - X| > \epsilon] = c > 0$.
W.l.o.g.~$\lim_{n \to \infty} \bP[|X_n - X| > \epsilon] = c$,
otherwise choose an appropriate subsequence.
We have
\begin{IEEEeqnarray*}{rCl} \begin{IEEEeqnarray*}{rCl}
\bE[|X_n - X|] &=& \int_\Omega |X_n - X | \dif\bP\\ \bP[|X_n - X| \ge \epsilon]
&=& \int_{|X_n - X| > \epsilon} |X_n - X| \dif\bP &\overset{\text{Markov}}{\ge}& \frac{\bE[|X_n - X|]}{\epsilon}
+ \underbrace{\int_{|X_n - X| \le \epsilon}|X_n-X|\dif\bP}_{\ge 0}\\ &\xrightarrow{n \to \infty} & 0,
&\ge& \epsilon \int_{|X_n -X | > \epsilon} \dif\bP\\
&=& \epsilon \cdot c > 0 \lightning
\end{IEEEeqnarray*} \end{IEEEeqnarray*}
\todo{Improve this with Markov} hence $X_n \xrightarrow{\bP} X$.
\end{subproof} \end{subproof}
\begin{claim} %+ \begin{claim} %+
$X_n \xrightarrow{\bP} X \implies X_n \xrightarrow{\text{dist}} X$. $X_n \xrightarrow{\bP} X \implies X_n \xrightarrow{\text{dist}} X$.
@ -142,13 +137,15 @@ from the lecture on stochastic.
we have we have
$\bP[|X_n - X| > \delta] < \frac{\epsilon}{2}$. $\bP[|X_n - X| > \delta] < \frac{\epsilon}{2}$.
It is It is
\[|F_n(t) - F(t)| \begin{IEEEeqnarray*}{rCl}
= |\bP[X_n \le t] - F(t)| |F_n(t) - F(t)|
\le \max(|\frac{\epsilon}{2} + \bP[X \le t + \delta] - F(t)|, &=& |\bP[X_n \le t] - F(t)|\\
&\le& \max(|\frac{\epsilon}{2} + \bP[X \le t + \delta] - F(t)|,
|\bP[X \le t -\delta] - F(t)|)\\ |\bP[X \le t -\delta] - F(t)|)\\
\le \max(|\frac{\epsilon}{2} + F(t + \delta) - F(t)|, |F(t-\delta) -F(t)| &\le& \max(|\frac{\epsilon}{2} + F(t + \delta) - F(t)|,
\le \epsilon, |F(t-\delta) -F(t)|)\\
\] &\le& \epsilon,
\end{IEEEeqnarray*}
hence $F_n(t) \to F(t)$. hence $F_n(t) \to F(t)$.
\end{subproof} \end{subproof}
\begin{claim} \begin{claim}