moved role of independence

This commit is contained in:
Josia Pietsch 2023-06-28 23:40:09 +02:00
parent f775ff03c3
commit 2399a418aa
Signed by untrusted user who does not match committer: jrpie
GPG key ID: E70B571D66986A2D
4 changed files with 25 additions and 39 deletions

View file

@ -219,22 +219,28 @@ Assume $Y = \One_B$, then $Y$ simple, then take the limit (using that $Y$ is bou
\begin{definition} \begin{definition}
Let $\cG$ and $\cH$ be $\sigma$-algebras. Let $\cG$ and $\cH$ be $\sigma$-algebras.
We call $\cG$ and $\cH$ \vocab[$\sigma$-algebra!independent]{independent}, We call $\cG$ and $\cH$ \vocab[$\sigma$-algebra!independent]{independent},
if % TODO \todo{TODO}
\end{definition} \end{definition}
\begin{theorem}[Role of independence] \begin{theorem}[Role of independence]
\label{ceprop12} \label{ceprop12}
\label{roleofindependence} \label{ceroleofindependence}
If $\cH$ is a sub-$\sigma$-algebra of $\cF$ and $\cH$ is independent Let $X$ be a random variable,
of $\sigma(\sigma(X), \cG)$, then and let $\cG, \cH$ be $\sigma$-algebras.
If $\cH$ is independent of $\sigma\left( \sigma(X), \cG \right)$,
then
\[ \[
\bE[X | \sigma(\cG, \cH)] \overset{\text{a.s.}}{=} \bE[X | \cG]. \bE[X | \sigma(\cG, \cH)] \overset{\text{a.s.}}{=} \bE[X | \cG].
\] \]
In particular, if $X$ is independent of $\cG$,
then
\[
\bE[X | \cG] \overset{\text{a.s.}}{=} \bE[X].
\]
\end{theorem} \end{theorem}
\begin{example}
If $X$ is independent of $\cG$,
then $\bE[X | \cG] \overset{\text{a.s.}}{=} \bE[X]$.
\end{example}
\begin{example}[Martingale property of the simple random walk] \begin{example}[Martingale property of the simple random walk]
Suppose $X_1,X_2,\ldots$ are i.i.d.~with $\bP[X_i = 1] = \bP[X_i = -1] = \frac{1}{2}$. Suppose $X_1,X_2,\ldots$ are i.i.d.~with $\bP[X_i = 1] = \bP[X_i = -1] = \frac{1}{2}$.
Let $S_n \coloneqq \sum_{i=1}^n X_i$ be the \vocab{simple random walk}. Let $S_n \coloneqq \sum_{i=1}^n X_i$ be the \vocab{simple random walk}.

View file

@ -1,29 +1,8 @@
\lecture{16}{2023-06-13}{} \lecture{16}{2023-06-13}{}
\subsection{Conditional expectation} % \subsection{Conditional expectation}
\begin{theorem} \begin{refproof}{ceroleofindependence}
\label{ceprop11}
\label{ceroleofindependence}
Let $X$ be a random variable,
and let $\cG, \cH$ be $\sigma$-algebras.
If $\cH$ is independent of $\sigma\left( \sigma(X), \cG \right)$,
then
\[
\bE[X | \sigma(\cG, \cH)] \overset{\text{a.s.}}{=} \bE[X | \cG].
\]
In particular, if $X$ is independent of $\cG$,
then
\[
\bE[X | \cG] \overset{\text{a.s.}}{=} \bE[X].
\]
\end{theorem}
\todo{Definition of independence wrt a $\sigma$-algebra}
\begin{proof}
Let $\cH$ be independent of $\sigma(\sigma(X), \cG)$. Let $\cH$ be independent of $\sigma(\sigma(X), \cG)$.
Then for all $H \in \cH$, we have that $\One_H$ Then for all $H \in \cH$, we have that $\One_H$
and any random variable measurable with respect to either $\sigma(X)$ and any random variable measurable with respect to either $\sigma(X)$
@ -50,7 +29,7 @@
The claim of the theorem follows by the uniqueness of conditional expectation. The claim of the theorem follows by the uniqueness of conditional expectation.
To deduce the second statement, choose $\cG = \{\emptyset, \Omega\}$. To deduce the second statement, choose $\cG = \{\emptyset, \Omega\}$.
\end{proof} \end{refproof}
\subsection{The Radon Nikodym theorem} \subsection{The Radon Nikodym theorem}

View file

@ -1,7 +1,9 @@
\lecture{17}{2023-06-15}{} \lecture{17}{2023-06-15}{}
\begin{definition}[Stochastic process] \begin{definition}[Stochastic process]
% TODO A \vocab{stochastic process} is a collection of random
variables $(X_t)_{t \in T}$ for some index set $T$.
In this lecture we will consider the case $T = \N$.
\end{definition} \end{definition}
\begin{goal} \begin{goal}

View file

@ -61,7 +61,7 @@ However, some subsets can be easily described, e.g.
\begin{fact}\label{lec19f2} \begin{fact}\label{lec19f2}
If $(X_n)_n$ is uniformly integrable, If $(X_n)_n$ is uniformly integrable,
then $(X_n)_n$ is bounded in $L^1$.k:w then $(X_n)_n$ is bounded in $L^1$.
\end{fact} \end{fact}
\begin{fact}\label{lec19f3} \begin{fact}\label{lec19f3}
@ -223,7 +223,7 @@ Let $(\Omega, \cF, \bP)$ as always and let $(\cF_n)_n$ always be a filtration.
to $X$ in $L^p$. to $X$ in $L^p$.
\end{theorem} \end{theorem}
\begin{proof} \begin{proof}
\todo{TODO}
\end{proof} \end{proof}
\begin{theorem} \begin{theorem}
@ -231,7 +231,6 @@ Let $(\Omega, \cF, \bP)$ as always and let $(\cF_n)_n$ always be a filtration.
Let $(X_n)_n$ be a martingale bounded in $L^p$. Let $(X_n)_n$ be a martingale bounded in $L^p$.
Then there exists a random variable $X \in L^p$, such that Then there exists a random variable $X \in L^p$, such that
$X_n = \bE[X | \cF_n]$ for all $n$. $X_n = \bE[X | \cF_n]$ for all $n$.
\end{theorem} \end{theorem}