fixed chebyshev
This commit is contained in:
parent
3e816f515e
commit
28bc88cbc5
2 changed files with 3 additions and 2 deletions
|
@ -197,6 +197,7 @@ Typically $\cF_n = \sigma(X_1, \ldots, X_n)$ for a sequence of random variables.
|
|||
\footnote{In this form it means, that there is some filtration,
|
||||
that we don't explicitly specify}.
|
||||
Then $(f(X_n))_n$ is a sub-martingale.
|
||||
Likewise, if $f$ is concave, then $((f(X_n))_n$ is a super-martingale.
|
||||
\end{corollary}
|
||||
\begin{proof}
|
||||
Apply \autoref{cjensen}.
|
||||
|
|
|
@ -280,7 +280,7 @@ This is taken from section 6.1 of the notes on Stochastik.
|
|||
Let $X$ be a random variable and $a > 0$.
|
||||
Then
|
||||
\[
|
||||
\bP[|X - \bE(X)| \ge a] \le \frac{\Var(X)}{a}.
|
||||
\bP[|X - \bE(X)| \ge a] \le \frac{\Var(X)}{a^2}.
|
||||
\]
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
|
@ -288,7 +288,7 @@ This is taken from section 6.1 of the notes on Stochastik.
|
|||
\begin{IEEEeqnarray*}{rCl}
|
||||
\bP[|X-\bE(X)| \ge a]
|
||||
&=& \bP[|X - \bE(X)|^2 \ge a^2]\\
|
||||
&\overset{\text{Markov}}{\ge}& \frac{\bE[|X - \bE(X)|^2]}{a^2}.
|
||||
&\overset{\text{Markov}}{\le}& \frac{\bE[|X - \bE(X)|^2]}{a^2}.
|
||||
\end{IEEEeqnarray*}
|
||||
\end{proof}
|
||||
|
||||
|
|
Reference in a new issue