some small changes
This commit is contained in:
parent
a3b5b209ce
commit
29a36b4dbc
2 changed files with 6 additions and 5 deletions
|
@ -26,12 +26,12 @@ where $\mu = \bP X^{-1}$.
|
||||||
We have
|
We have
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
&&\lim_{T \to \infty} \frac{1}{2 \pi} \int_{-T}^T \int_{\R} \frac{e^{-\i t b}- e^{-\i t a}}{-\i t} e^{\i t x} \dif t \bP(\dif x)\\
|
&&\lim_{T \to \infty} \frac{1}{2 \pi} \int_{-T}^T \int_{\R} \frac{e^{-\i t b}- e^{-\i t a}}{-\i t} e^{\i t x} \dif t \bP(\dif x)\\
|
||||||
&\overset{\text{Fubini for $L^1$}}{=}& \lim_{T \to \infty} \frac{1}{2 \pi} \int_{\R} \int_{-T}^T \frac{e^{-\i t b}- e^{-\i t a}}{-\i t} e^{\i t x} \dif t \bP(\dif x)\\
|
&\overset{\yaref{thm:fubini}}{=}& \lim_{T \to \infty} \frac{1}{2 \pi} \int_{\R} \int_{-T}^T \frac{e^{-\i t b}- e^{-\i t a}}{-\i t} e^{\i t x} \dif t \bP(\dif x)\\
|
||||||
&=& \lim_{T \to \infty} \frac{1}{2 \pi} \int_{\R} \int_{-T}^T \frac{e^{\i t (b-x)}- e^{\i t (x-a)}}{-\i t} \dif t \bP(\dif x)\\
|
&=& \lim_{T \to \infty} \frac{1}{2 \pi} \int_{\R} \int_{-T}^T \frac{e^{\i t (b-x)}- e^{\i t (x-a)}}{-\i t} \dif t \bP(\dif x)\\
|
||||||
&=& \lim_{T \to \infty} \frac{1}{2 \pi} \int_{\R} \underbrace{\int_{-T}^T \left[ \frac{\cos(t (x-b)) - \cos(t(x-a))}{-\i t}\right] \dif t}_{=0 \text{, as the function is odd}} \bP(\dif x) \\
|
&=& \lim_{T \to \infty} \frac{1}{2 \pi} \int_{\R} \underbrace{\int_{-T}^T \left[ \frac{\cos(t (x-b)) - \cos(t(x-a))}{-\i t}\right] \dif t}_{=0 \text{, as the function is odd}} \bP(\dif x) \\
|
||||||
&& + \lim_{T \to \infty} \frac{1}{2\pi} \int_{\R}\int_{-T}^T \frac{\sin(t ( x - b)) - \sin(t(x-a))}{-t} \dif t \bP(\dif x)\\
|
&& + \lim_{T \to \infty} \frac{1}{2\pi} \int_{\R}\int_{-T}^T \frac{\sin(t ( x - b)) - \sin(t(x-a))}{-t} \dif t \bP(\dif x)\\
|
||||||
&=& \lim_{T \to \infty} \frac{1}{\pi} \int_\R \int_{0}^T \frac{\sin(t(x-a)) - \sin(t(x-b))}{t} \dif t \bP(\dif x)\\
|
&=& \lim_{T \to \infty} \frac{1}{\pi} \int_\R \int_{0}^T \frac{\sin(t(x-a)) - \sin(t(x-b))}{t} \dif t \bP(\dif x)\\
|
||||||
&\overset{\substack{\yaref{fact:sincint},\text{dominated convergence}}}{=}&
|
&\overset{\substack{\yaref{fact:sincint},\text{DCT}}}{=}&
|
||||||
\frac{1}{\pi} \int -\frac{\pi}{2} \One_{x < a} + \frac{\pi}{2} \One_{x > a}
|
\frac{1}{\pi} \int -\frac{\pi}{2} \One_{x < a} + \frac{\pi}{2} \One_{x > a}
|
||||||
- (- \frac{\pi}{2} \One_{x < b} + \frac{\pi}{2} \One_{x > b}) \bP(\dif x)\\
|
- (- \frac{\pi}{2} \One_{x < b} + \frac{\pi}{2} \One_{x > b}) \bP(\dif x)\\
|
||||||
&=& \frac{1}{2} \bP(\{a\} ) + \frac{1}{2} \bP(\{b\}) + \bP((a,b))\\
|
&=& \frac{1}{2} \bP(\{a\} ) + \frac{1}{2} \bP(\{b\}) + \bP((a,b))\\
|
||||||
|
@ -107,7 +107,7 @@ where $\mu = \bP X^{-1}$.
|
||||||
for all continuity points $a $ and $ b$ of $F$.
|
for all continuity points $a $ and $ b$ of $F$.
|
||||||
We have
|
We have
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
RHS &\overset{\text{Fubini}}{=}& \frac{1}{2 \pi} \int_{\R} \int_{a}^b e^{-\i t x} \phi(t) \dif x \dif t\\
|
\rhs &\overset{\text{Fubini}}{=}& \frac{1}{2 \pi} \int_{\R} \int_{a}^b e^{-\i t x} \phi(t) \dif x \dif t\\
|
||||||
&=& \frac{1}{2 \pi} \int_\R \phi(t) \int_a^b e^{-\i t x} \dif x \dif t\\
|
&=& \frac{1}{2 \pi} \int_\R \phi(t) \int_a^b e^{-\i t x} \dif x \dif t\\
|
||||||
&=& \frac{1}{2\pi} \int_{\R} \phi(t) \left( \frac{e^{-\i t b} - e^{-\i t a}}{- \i t} \right) \dif t\\
|
&=& \frac{1}{2\pi} \int_{\R} \phi(t) \left( \frac{e^{-\i t b} - e^{-\i t a}}{- \i t} \right) \dif t\\
|
||||||
&\overset{\text{dominated convergence}}{=}& \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} \phi(t) \left( \frac{e^{-\i t b} - e^{- \i t a}}{- \i t} \right) \dif t
|
&\overset{\text{dominated convergence}}{=}& \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} \phi(t) \left( \frac{e^{-\i t b} - e^{- \i t a}}{- \i t} \right) \dif t
|
||||||
|
@ -130,7 +130,7 @@ However, Fourier analysis is not only useful for continuous probability density
|
||||||
\begin{refproof}{bochnersformula}
|
\begin{refproof}{bochnersformula}
|
||||||
We have
|
We have
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
RHS &=& \lim_{T \to \infty} \frac{1}{2 T} \int_{-T}^T e^{-\i t x} \int_{\R} e^{\i t y} \bP(\dif y) \\
|
\rhs &=& \lim_{T \to \infty} \frac{1}{2 T} \int_{-T}^T e^{-\i t x} \int_{\R} e^{\i t y} \bP(\dif y) \\
|
||||||
&\overset{\text{Fubini}}{=}&
|
&\overset{\text{Fubini}}{=}&
|
||||||
\lim_{T \to \infty} \frac{1}{2 T} \int_\R \int_{-T}^T
|
\lim_{T \to \infty} \frac{1}{2 T} \int_\R \int_{-T}^T
|
||||||
e^{-\i t (y - x)} \dif t \bP(\dif y)\\
|
e^{-\i t (y - x)} \dif t \bP(\dif y)\\
|
||||||
|
|
|
@ -98,7 +98,8 @@ we need the following theorem, which we won't prove here:
|
||||||
\begin{refproof}{martingaleisce}
|
\begin{refproof}{martingaleisce}
|
||||||
Since $(X_n)_n$ is bounded in $L^p$, by \yaref{banachalaoglu},
|
Since $(X_n)_n$ is bounded in $L^p$, by \yaref{banachalaoglu},
|
||||||
there exists $X \in L^p$ and a subsequence
|
there exists $X \in L^p$ and a subsequence
|
||||||
$(X_{n_k})_k$ such that for all $Y \in L^q$ ($\frac{1}{p} + \frac{1}{q} = 1$ )
|
$(X_{n_k})_k$ such that for all $Y \in L^q$,
|
||||||
|
where as always $\frac{1}{p} + \frac{1}{q} = 1$,
|
||||||
\[
|
\[
|
||||||
\int X_{n_k} Y \dif \bP \to \int XY \dif \bP
|
\int X_{n_k} Y \dif \bP \to \int XY \dif \bP
|
||||||
\]
|
\]
|
||||||
|
|
Reference in a new issue