some changes
This commit is contained in:
parent
41cb2f2094
commit
339fb05307
3 changed files with 5 additions and 2 deletions
|
@ -34,7 +34,7 @@ where $\mu = \bP X^{-1}$.
|
||||||
\\&&
|
\\&&
|
||||||
+ \lim_{T \to \infty} \frac{1}{2\pi} \int_{\R}\int_{-T}^T \frac{\sin(t ( x - b)) - \sin(t(x-a))}{-t} dt d\bP(x)\\
|
+ \lim_{T \to \infty} \frac{1}{2\pi} \int_{\R}\int_{-T}^T \frac{\sin(t ( x - b)) - \sin(t(x-a))}{-t} dt d\bP(x)\\
|
||||||
&=& \lim_{T \to \infty} \frac{1}{\pi} \int_\R \int_{0}^T \frac{\sin(t(x-a)) - \sin(t(x-b))}{t} dt d\bP(x)\\
|
&=& \lim_{T \to \infty} \frac{1}{\pi} \int_\R \int_{0}^T \frac{\sin(t(x-a)) - \sin(t(x-b))}{t} dt d\bP(x)\\
|
||||||
&\overset{\text{\autoref{fact:intsinxx}, dominated convergence}}{=}& \frac{1}{\pi} \int -\frac{\pi}{2} \One_{x < a} + \frac{\pi}{2} \One_{x > a }
|
&\overset{\substack{\text{\autoref{fact:intsinxx},}\\\text{dominated convergence}}}{=}& \frac{1}{\pi} \int -\frac{\pi}{2} \One_{x < a} + \frac{\pi}{2} \One_{x > a }
|
||||||
- (- \frac{\pi}{2} \One_{x < b} + \frac{\pi}{2} \One_{x > b}) d\bP(x)\\
|
- (- \frac{\pi}{2} \One_{x < b} + \frac{\pi}{2} \One_{x > b}) d\bP(x)\\
|
||||||
&=& \frac{1}{2} \bP(\{a\} ) + \frac{1}{2} \bP(\{b\}) + \bP((a,b))\\
|
&=& \frac{1}{2} \bP(\{a\} ) + \frac{1}{2} \bP(\{b\}) + \bP((a,b))\\
|
||||||
&=& \frac{F(b) + F(b-)}{2} - \frac{F(a) - F(a-)}{2}
|
&=& \frac{F(b) + F(b-)}{2} - \frac{F(a) - F(a-)}{2}
|
||||||
|
|
|
@ -116,7 +116,7 @@ If $S_n \sim \Bin(n,p)$ and $[a,b] \subseteq \R$, we have
|
||||||
$\bP[|S_n - np| \le 0.01 n] \le 0.05$.
|
$\bP[|S_n - np| \le 0.01 n] \le 0.05$.
|
||||||
We have that
|
We have that
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
&&\bP[|S_n - nü| \le 0.01n] \\
|
&&\bP[|S_n - np| \le 0.01n] \\
|
||||||
&=& \bP[ -0.01 n \le S_n - np \le 0.01n]\\
|
&=& \bP[ -0.01 n \le S_n - np \le 0.01n]\\
|
||||||
&=& \bP[-\frac{0.01 n}{\sqrt{n p (1-p)} } \le \frac{S_n - np}{\sqrt{n p (1-p)} } \le \frac{0.01 n}{\sqrt{n p (1-p)}}\\
|
&=& \bP[-\frac{0.01 n}{\sqrt{n p (1-p)} } \le \frac{S_n - np}{\sqrt{n p (1-p)} } \le \frac{0.01 n}{\sqrt{n p (1-p)}}\\
|
||||||
&\approx& \Phi(0.01 \sqrt{\frac{n}{p(1-p)}}) - \Phi(-0.01 \sqrt{\frac{n}{p(1-p)}})\\
|
&\approx& \Phi(0.01 \sqrt{\frac{n}{p(1-p)}}) - \Phi(-0.01 \sqrt{\frac{n}{p(1-p)}})\\
|
||||||
|
|
|
@ -93,3 +93,6 @@
|
||||||
|
|
||||||
\NewFancyTheorem[thmtools = { style = thmredmargin} , group = { big } ]{warning}
|
\NewFancyTheorem[thmtools = { style = thmredmargin} , group = { big } ]{warning}
|
||||||
\DeclareSimpleMathOperator{Var}
|
\DeclareSimpleMathOperator{Var}
|
||||||
|
\DeclareSimpleMathOperator{Exp}
|
||||||
|
\DeclareSimpleMathOperator{Bin}
|
||||||
|
\DeclareSimpleMathOperator{Ber}
|
||||||
|
|
Reference in a new issue