diff --git a/inputs/lecture_15.tex b/inputs/lecture_15.tex index a3b53b8..b8f0fb0 100644 --- a/inputs/lecture_15.tex +++ b/inputs/lecture_15.tex @@ -189,7 +189,7 @@ Recall \begin{theorem}[Tower property] % 10 \label{ceprop10} - \label{ctower} + \label{cetower} Suppose $\cF \supset \cG \supset \cH$ are sub-$\sigma$-algebras. Then \[ diff --git a/inputs/lecture_19.tex b/inputs/lecture_19.tex index 6766371..7b55c42 100644 --- a/inputs/lecture_19.tex +++ b/inputs/lecture_19.tex @@ -218,15 +218,14 @@ Let $(\Omega, \cF, \bP)$ as always and let $(\cF_n)_n$ always be a filtration. \end{proof} \begin{theorem} + \label{ceismartingale} Let $X \in L^p$ for some $p \ge 1$. Then $X_n \coloneqq \bE[X | \cF_n]$ defines a martingale which converges to $X$ in $L^p$. \end{theorem} -\begin{proof} - -\end{proof} \begin{theorem} + \label{martingaleisce} Let $p > 1$. Let $(X_n)_n$ be a martingale bounded in $L^p$. Then there exists a random variable $X \in L^p$, such that diff --git a/inputs/lecture_20.tex b/inputs/lecture_20.tex new file mode 100644 index 0000000..ab378d8 --- /dev/null +++ b/inputs/lecture_20.tex @@ -0,0 +1,118 @@ +\begin{refproof}{ceismartingale} + By the tower property (\autoref{cetower}) + it is clear that $(\bE[X | \cF_n])_n$ + is a martingale. + + First step: + Assume that $X$ is bounded. + Then, by \autoref{cejensen}, $|X_n| \le \bE[|X| | \cF_n]$, + hence $\sup_{\substack{n \in \N \\ \omega \in \Omega}} | X_n(\omega)| < \infty$. + Thus $(X_n)_n$ is a martingale in $L^{\infty} \subseteq L^2$. + By the convergence theorem for martingales in $L^2$ % TODO REF + there exists a random variable $Y$, + such that $X_n \xrightarrow{L^2} Y$. + + Fix $m \in \N$ and $A \in \cF_m$. + Then + \begin{IEEEeqnarray*}{rCl} + \int_A Y \dif \bP + &=& \lim_{n \to \infty} \int_A X_n \dif \bP\\ + &=& \lim_{n \to \infty} \bE[X_n \One_A]\\ + &=& \lim_{n \to \infty} \bE[\bE[X | \cF_n] \One_A]\\ + &\overset{A \in \cF_n}{=}& \lim_{\substack{n \to \infty\\n \ge m}} \bE[X \One_A]\\ + \end{IEEEeqnarray*} + Hence $\int_A Y \dif \bP = \int_A X \dif \bP$ for all $m \in \N, A \in \cF_m$. + Since $\cF = \sigma\left( \bigcup \cF_n \right)$ + this holds for all $A \in \cF$. + Hence $X = Y$ a.s., so $X_n \xrightarrow{L^2} X$. + Since $(X_n)_n$ is uniformly bounded, this also means + $X_n \xrightarrow{L^p} X$. + + + Second step: + Now let $X \in L^p$ be general and define + \[ + X'(\omega) \coloneqq \begin{cases} + X(\omega)& \text{ if } |X(\omega)| \le M,\\ + 0&\text{ otherwise} + \end{cases} + \] + for some $M > 0$. + Then $X' \in L^\infty$ and + \begin{IEEEeqnarray*}{rCl} + \int | X - X'|^p \dif \bP &=& \int_{\{|X| > M\} } |X|^p \dif \bP \xrightarrow{M \to \infty} 0 + \end{IEEEeqnarray*} + as $\bP$ is \vocab{regular}, \todo{Definition?} + i.e.~$\forall \epsilon > 0 \exists k . \bP[|X|^p \in [-k,k] \ge 1-\epsilon$. + + % Take some $\epsilon > 0$ and $M$ large enough such that + % \[ + % \int |X - X'| \dif \bP < \epsilon. + % \] + + % Let $(X_n')_n$ be the martingale given by $(\bE[X' | \cF_n])_n$. + % Then $X_n' \xrightarrow{L^p} X'$ by the first step. + + % It is + % \begin{IEEEeqnarray*}{rCl} + % \|X_n - X_n'\|_{L^p}^p &=& \bE[\bE[X - X' | \cF_n]^{p}]\\ + % &\overset{\text{Jensen}}{\le}& \bE[\bE[(X- X')^p | \cF_n]\\ + % &=& \|X - X'\|_{L^p}^p\\ + % &<& \epsilon. + % \end{IEEEeqnarray*} + + Hence + \[ + \|X_n - X\|_{L^p} \le |X_n - X_n'|_{L^p} + |X_n' - X'|_{L^p} + | X - X'|_{L^p} \le 3 \epsilon. + \] + Thus $X_n \xrightarrow{L^p} X$. +\end{refproof} + +For the proof of \autoref{martingaleisce}, +we need the following theorem, which we won't prove here: +\begin{theorem}[Banach Alaoglu] + \label{banachalaoglu} + Let $X$ be a normed vector space and $X^\ast$ its + continuous dual. + Then the closed unit ball in $X^\ast$ is compact + w.r.t.~the ${\text{weak}}^\ast$ topology. +\end{theorem} +\begin{fact} + We have $L^p \cong (L^q)^\ast$ for $\frac{1}{p} + \frac{1}{q} = 1$ + via + \begin{IEEEeqnarray*}{rCl} + L^p &\longrightarrow & (L^q)^\ast \\ + f &\longmapsto & (g \mapsto \int g f \dif d\bP) + \end{IEEEeqnarray*} + + We also have $(L^1)^\ast \cong L^\infty$, + however $ (L^\infty)^\ast \not\cong L^1$. +\end{fact} + +\begin{refproof}{martingaleisce} + Since $(X_n)_n$ is bounded in $L^p$, by \autoref{banachalaoglu}, + there exists $X \in L^p$ and a subsequence + $(X_{n_k})_k$ such that for all $Y \in L^q$ ($\frac{1}{p} + \frac{1}{q} = 1$ ) + \[ + \int X_{n_k} Y \dif \bP \to \int XY \dif \bP + \] + (Note that this argument does not work for $p = 1$, + because $(L^\infty)^\ast \not\cong L^1$). + + Let $A \in \cF_m$ for some fixed $m$ and write + $Y = \One_A$. + Then + \begin{IEEEeqnarray*}{rCl} + \int_A X \dif \bP + &=& \lim_{k \to \infty} \int_A X_{n_k} \dif \bP\\ + &=& \lim_{k \to \infty} \bE[X_{n_k} \One_A]\\ + &\overset{\text{for }n_k \ge m}{=}& \int_{k \to \infty} \bE[X_m \One_A]. + \end{IEEEeqnarray*} + Hence $X_n = \bE[X | \cF_m]$ by the uniqueness of conditional expectation + and by \autoref{ceismartingale}, + we get the convergence. + +\end{refproof} + + +