more details on example from lecture 05
This commit is contained in:
parent
e6d50be72e
commit
4e3c501022
1 changed files with 27 additions and 6 deletions
|
@ -26,18 +26,26 @@ We fix a probability space $(\Omega, \cF, \bP)$ once and for all.
|
||||||
\begin{enumerate}[(a)]
|
\begin{enumerate}[(a)]
|
||||||
\item Given $\epsilon > 0$, we need to show that
|
\item Given $\epsilon > 0$, we need to show that
|
||||||
\[
|
\[
|
||||||
\bP\left[ \left| \frac{X_1 + \ldots + X_n}{n}\right| > \epsilon\right] \to 0 \]
|
\bP\left[
|
||||||
as $n \to 0$.
|
\left| \frac{X_1 + \ldots + X_n}{n} - m\right| > \epsilon
|
||||||
|
\right] \xrightarrow{n \to 0} 0.
|
||||||
|
\]
|
||||||
|
|
||||||
Let $S_n \coloneqq X_1 + \ldots + X_n$.
|
Let $S_n \coloneqq X_1 + \ldots + X_n$.
|
||||||
Then $\bE[S_n] = \bE[X_1] + \ldots + \bE[X_n] = nm$.
|
Then $\bE[S_n] = \bE[X_1] + \ldots + \bE[X_n] = nm$.
|
||||||
We have
|
We have
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
\bP\left[ \left| \frac{X_1 + \ldots + X_n}{n}\right| > \epsilon\right] &=& \bP\left[\left|\frac{S_n}{n}-m\right| > \epsilon\right]\\
|
\bP\left[ \left| \frac{X_1 + \ldots + X_n}{n} - m\right| > \epsilon\right]
|
||||||
&\overset{\text{Chebyshev}}{\le }& \frac{\Var\left( \frac{S_n}{n} \right) }{\epsilon^2} = \frac{1}{n} \frac{\Var(X_1)}{\epsilon^2} \xrightarrow{n \to \infty} 0
|
&=& \bP\left[\left|\frac{S_n}{n}-m\right| > \epsilon\right]\\
|
||||||
|
&\overset{\text{Chebyshev}}{\le }&
|
||||||
|
\frac{\Var\left( \frac{S_n}{n} \right) }{\epsilon^2}
|
||||||
|
= \frac{1}{n} \frac{\Var(X_1)}{\epsilon^2}
|
||||||
|
\xrightarrow{n \to \infty} 0
|
||||||
\end{IEEEeqnarray*}
|
\end{IEEEeqnarray*}
|
||||||
since
|
since
|
||||||
\[\Var(\frac{S_n}{n}) = \frac{1}{n^2} \Var(S_n) = \frac{1}{n^2} n \Var(X_i).\]
|
\[\Var\left(\frac{S_n}{n}\right)
|
||||||
|
= \frac{1}{n^2} \Var\left(S_n\right)
|
||||||
|
= \frac{1}{n^2} n \Var(X_i).\]
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
\end{refproof}
|
\end{refproof}
|
||||||
For the proof of (b) we need the following general result:
|
For the proof of (b) we need the following general result:
|
||||||
|
@ -54,4 +62,17 @@ We'll prove this later\todo{Move proof}
|
||||||
Does the converse hold? I.e.~does $\sum_{n \ge 1} X_n < \infty$ a.s.~
|
Does the converse hold? I.e.~does $\sum_{n \ge 1} X_n < \infty$ a.s.~
|
||||||
then $\sum_{n \ge 1} \Var(X_n) < \infty$.
|
then $\sum_{n \ge 1} \Var(X_n) < \infty$.
|
||||||
\end{question}
|
\end{question}
|
||||||
This does not hold. Consider for example $X_n = \frac{1}{n^2} \delta_n + \frac{1}{n^2} \delta_{-n} + (1-\frac{2}{n^2}) \delta_0$.
|
This does not hold.
|
||||||
|
Consider the following:
|
||||||
|
\begin{example}
|
||||||
|
Let $X_1,X_2,\ldots$ be independent random variables,
|
||||||
|
where $X_n$ has distribution
|
||||||
|
$\frac{1}{n^2} \delta_n + \frac{1}{n^2} \delta_{-n} + (1-\frac{2}{n^2}) \delta_0$.
|
||||||
|
We have $\bP[X_n \neq 0] = \frac{2}{n^2}$.
|
||||||
|
Since this is summable, Borel-Cantelli yields
|
||||||
|
\[
|
||||||
|
\bP[X_{n} \neq 0 \text{ for infinitely many $n$}] = 0.
|
||||||
|
\]
|
||||||
|
In particular, $X_n$ is summable almost surely.
|
||||||
|
However $\Var(X_n) = 2$ is not summable.
|
||||||
|
\end{example}
|
||||||
|
|
Reference in a new issue