lecture 17

This commit is contained in:
Josia Pietsch 2023-06-15 17:51:32 +02:00
parent 284ddd423a
commit 5304f38fbb
Signed by: jrpie
GPG key ID: E70B571D66986A2D
3 changed files with 172 additions and 5 deletions

View file

@ -221,8 +221,7 @@ Typically $\cF_n = \sigma(X_1, \ldots, X_n)$ for a sequence of random variables.
\begin{example} \begin{example}
\begin{itemize} The simple random walk:
\item The simple random walk:
Let $\xi_1, \xi_2, ..$ iid, Let $\xi_1, \xi_2, ..$ iid,
$\bP[\xi_i = 1] = \bP[\xi_i = -1] = \frac{1}{2}$, $\bP[\xi_i = 1] = \bP[\xi_i = -1] = \frac{1}{2}$,
@ -231,7 +230,8 @@ Typically $\cF_n = \sigma(X_1, \ldots, X_n)$ for a sequence of random variables.
Then $X_n$ is $\cF_n$-measurable. Then $X_n$ is $\cF_n$-measurable.
Showing that $(X_n)_n$ is a martingale Showing that $(X_n)_n$ is a martingale
is left as an exercise. is left as an exercise.
\item See exercise sheet 9. \end{example}
\item The branching process (next lecture). \begin{example}
\end{itemize} See exercise sheet 9.
\todo{Copy}
\end{example} \end{example}

166
inputs/lecture_17.tex Normal file
View file

@ -0,0 +1,166 @@
\lecture{17}{2023-06-15}{}
\begin{definition}[Stochastic process]
% TODO
\end{definition}
\begin{goal}
What about a ``gambling strategy''?
Consider a stochastic process $(X_n)_{n \in \N}$.
Note that the increments $X_{n+1} - X_n$ can be thought of as the win
or loss per round of a game.
Suppose that there is another stochastic process
$(C_n)_{n \ge 1}$ such that $C_n$ is determined
by the information gathered up until time $n$,
i.e.~$C_n$ is measurable with respect to $\cF_{n-1}$.
If such process $C_n$ exists, we say that $ C_n$ is
\vocab[Stochastic process!previsible]{previsible}.
Think of $C_n$ as our strategy of playing the game.
Then $C_n(X_n - X_{n-1})$ defines the win in the $n$-th game,
while
\[
Y_n \coloneqq \sum_{j=1}^n C_j(X_j - X_{j-1})
\]
defines the cumulative win process.
\end{goal}
\begin{lemma}
If $(C_n)_{n \ge 1}$ is previsible and $(X_n)_{n \ge 0}$
is a (sub/super-) martingale
and there exists a constant $K_n$ such that $|C_n(\omega)| \le K_n$.
Then $(Y_n)_{n \ge 1}$ is also a (sub/super-) martingale.
\end{lemma}
\begin{proof}
Exercise. \todo{Copy}
\end{proof}
\begin{remark}
The assumption of $K_n$ being constant can be weakened to
$C_n \in L^p(\bP)$, $X_n \in ^q(\bP)$ with $\frac{1}{p} + \frac{1}{q} = 1$.
\end{remark}
Suppose we have $(X_n)$ adapted, $X_n \in L^1(\bP)$,
$(C_n)_{n \ge 1}$ previsible.
We play according to the following principle:
Pick two real numbers $a < b$.
Wait until $X_n \le a$, then start playing.
Stop playing when $X_n \ge b$.
I.e.~define
\begin{itemize}
\item $C_1 \coloneqq 0$,
\item $C_n \coloneqq \One_{\{C_{n-1} = 1\}} \cdot \One_{\{X_{n-1} \le b\}} + \One_{\{C_{n-1} = 0\} } \One_{\{X_{n-1}\} < a}$.
\end{itemize}
\begin{definition}
Fix $N \in \N$ and let
\[U_n^X([a,b]) \coloneqq \# \{\text{Upcrossings of $[a,b]$ made by $n \mapsto X_n(\omega)$ by time $n$}\},\]
i.e.~$U_n([a,b])(\omega)$ is the largest $k \in \N_0$ such that we can find a
sequence
$0 \le s_1 < t_1 < s_2 < t_2 < \ldots < s_k < t_k \le N$
such that $X_{s_j}(\omega) < a$ and $X_{t_j}(\omega) > b$ for all $1 \le j \le k$.
\end{definition}
Clearly $U_N^X([a,b]) \uparrow$ as $N$ increases.
It follows that the monotonic limit $U_\infty([a,b]) \coloneqq \lim_{N \to \infty} U_N([a,b])$ exists pointwise.
\begin{lemma} % Lemma 1
\[
\{\omega | \liminf_{N \to \infty} Z_N(\omega) < a < b <
\limsup_{N \to \infty} Z_N(\omega)\} \subseteq
\{\omega: U^{Z}_\infty([a,b])(\omega) = \infty\}
\]
for every sequence of measurable functions $(Z_n)_{n \ge 1}$.
\end{lemma}
\begin{lemma} % 2
Let $Y_n(\omega) \coloneqq \sum_{j=1}^n C_j(X_j - X_{j-1})$.
Then $Y_N \ge (b -a) U_N([a,b]) - (X_N - a)^{-}$.
\end{lemma}
\begin{proof}
Every upcrossing of $[a,b]$ increases the value of $Y$ by $(b-a)$,
while the last intverval of play $(X_n -a)^{-}$ overemphasizes the loss.
\end{proof}
\begin{lemma} %3
Suppose $(X_n)_n$ is a supermartingale.
Then in the above setup, $(b-a) \bE[U_N([a,b])] \le \bE[(X_n - a)^-]$.
\end{lemma}
\begin{proof}
Obvious from lemma 2 % TODO REF
and the supermartingale property.
\end{proof}
\begin{corollary}
Let $(X_n)_n$ be a \vocab[Supermartingale!bounded]{supermartingale bounded in $L^1(\bP)$ },
i.e.~$\sup_n \bE[|X_n| ] < \infty$.
Then $(b-a) \bE(U_\infty) \le |a| + \sup_n \bE(|X_n|)$.
In particular, $\bP[U_\infty = \infty] = 0$.
\end{corollary}
\begin{proof}
By lemma 3 % TODO REF
we have that
\[(b-a) \bE[U_N([a,b])] \le \bE[ | X_N| ] + |a| \le \sup_n \bE[|X_n|] + |a|.\]
Since $U_N(\cdot) \ge 0$ and $U_N(\cdot ) \uparrow U_\infty(\cdot )$,
by the monotone convergence theorem
\[
\bE(U_n([a,b])] \uparrow \bE[U_\infty([a,b])].
\]
\end{proof}
Assume now, that our process $(X_n)_{n \ge 1}$ is a supermartingale
bounded in $L^1(\bP)$.
Let
\[
\Lambda \coloneqq \{\omega | X_n(\omega) \text{ does not converge to anything in $[-\infty,\infty]$}\}.
\]
We have
\begin{IEEEeqnarray*}{rCl}
\Lambda &=& \{\omega | \liminf_N X_N(\omega) < \limsup_N X_N(\omega)\}\\
&=& \{\omega | \liminf_N X_N(\omega) < a < b \limsup_N X_N(\omega)\} \\
&=& \bigcup_{a,b \in \Q} \underbrace{\{\omega | \liminf_N X_N(\omega) < a < b < \limsup_N X_N(\omega)\}}_{\Lambda_{a,b}} \\
\end{IEEEeqnarray*}
We have $\Lambda_{a,b} \subseteq \{\omega : U_{\infty}([a,b])(\omega) = \infty\} $ by lemma 1. % TODO REF
By lemma 3 % TODO REF
we have $\bP(\Lambda_{a,b}) = 0$, hence $\bP(\Lambda) = 0$.
Hence there exists a random variable $X_\infty$ such that $X_n \xrightarrow{a.s.} X_\infty$.
\begin{claim}
$\bP[X_\infty \in \{\pm \infty\}] = 0$.
\end{claim}
\begin{subproof}
It suffices to show that $\bE[|X_\infty|] < \infty$.
We have.
\begin{IEEEeqnarray*}{rCl}
\bE[|X_\infty|] &=& \bE[\liminf_{n \to \infty} |X_n|]\\
&\overset{\text{Fatou}}{\le }& \liminf_n \bE[|X_n|]\\
&\le & \sup_n \bE[|X_n|]\\
&<& \infty.
\end{IEEEeqnarray*}
\end{subproof}
We have thus shown
\begin{theorem}[Doob's martingale convergence theorem]
\label{doobmartingaleconvergence}
Any supermartingale bounded in $L^1$ converges almost surely to a
random variable, which is almost surely finite.
In particular, any non-negative supermartingale converges a.s.~to a finite random variable.
\end{theorem}
The second part follows from
\begin{claim}
Any non-negative supermartingale is bounded in $L^1$.
\end{claim}
\begin{subproof}
We need to show $\sup_n \bE(|X_n|) < \infty$.
Since the supermartingale is non-negative, we have $\bE[|X_n|] = \bE[X_n]$
and since it is a supermartingale $\bE[X_n] \le \bE[X_0]$.
\end{subproof}
\todo{rearrange proof}
\begin{example}[Branching process]
% TODO
\end{example}

View file

@ -40,6 +40,7 @@
\input{inputs/lecture_14.tex} \input{inputs/lecture_14.tex}
\input{inputs/lecture_15.tex} \input{inputs/lecture_15.tex}
\input{inputs/lecture_16.tex} \input{inputs/lecture_16.tex}
\input{inputs/lecture_17.tex}
\cleardoublepage \cleardoublepage