diff --git a/inputs/lecture_14.tex b/inputs/lecture_14.tex index dfe485b..91095a3 100644 --- a/inputs/lecture_14.tex +++ b/inputs/lecture_14.tex @@ -101,7 +101,7 @@ and then do the harder proof. i.e.~$H$ is a vector space with an inner product $\langle \cdot, \cdot \rangle_H$ which defines a norm by $\|x\|_H^2 = \langle x, x\rangle_H$ making $H$ a complete metric space. - For any $x \in H$ and $K \subseteq H$ closed and convex, + For any $x \in H$ and closed, convex subspace $K \subseteq H$, there exists a unique $z \in K$ such that the following equivalent conditions hold: \begin{enumerate}[(a)] \item $\forall y \in K : \langle x-z, y\rangle_H = 0$,