lecture numbers
This commit is contained in:
parent
cc6f7fd381
commit
684e920f14
6 changed files with 6 additions and 5 deletions
|
@ -1,4 +1,4 @@
|
|||
% Lecture 1 - 2023-04-04
|
||||
\lecture{1}{2023-04-04}{}
|
||||
|
||||
First, let us recall some basic definitions:
|
||||
\begin{definition}
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
% Lecture 12 2023-05-16
|
||||
\lecture{12}{2023-05-16}{}
|
||||
|
||||
We now want to prove \autoref{clt}.
|
||||
The plan is to do the following:
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
% Lecture 13 2023-05
|
||||
\lecture{13}{2023-05}{}
|
||||
%The difficult part is to show \autoref{levycontinuity}.
|
||||
%This is the last lecture, where we will deal with independent random variables.
|
||||
|
||||
|
|
|
@ -1 +1,2 @@
|
|||
\lecture{4}{}{}
|
||||
\todo{Lecture 4 missing}
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
% Lecture 8 2023-05-02
|
||||
\lecture{8}{2023-05-02}{}
|
||||
\subsection{Kolmogorov's 0-1-law}
|
||||
Some classes of events always have probability $0$ or $1$.
|
||||
One example of such a 0-1-law is the Borel-Cantelli Lemma
|
||||
|
|
|
@ -103,4 +103,4 @@
|
|||
\DeclareSimpleMathOperator{Exp}
|
||||
|
||||
\newcommand*\dif{\mathop{}\!\mathrm{d}}
|
||||
\newcommand\lecture[3]{{\color{gray}\hfill Lecture #1 (#2)}}
|
||||
\newcommand\lecture[3]{\hrule{\color{darkgray}\hfill{\tiny[Lecture #1, #2]}}}
|
||||
|
|
Reference in a new issue