lecture 18 exercise branching process

This commit is contained in:
Josia Pietsch 2023-07-17 16:11:03 +02:00
parent b7e2d7bd3c
commit 6e964e0449
Signed by untrusted user who does not match committer: jrpie
GPG key ID: E70B571D66986A2D

View file

@ -15,31 +15,32 @@ Hence the same holds for submartingales, i.e.
\subsection{Doob's $L^p$ Inequality} \subsection{Doob's $L^p$ Inequality}
\begin{question} \begin{question}
What about $L^p$ convergence of martingales? What about $L^p$ convergence of martingales?
\end{question} \end{question}
\begin{example}[\vocab{Branching process}] \begin{example}[\vocab{Branching process}]
Fix $u > 0$ and let $p = \frac{1}{1+u}$.
Let $ (Z_n)_{n \ge 1}$ be i.i.d.~$\pm 1$ with Let $ (Z_n)_{n \ge 1}$ be i.i.d.~$\pm 1$ with
$\bP[Z_n = 1] = p \in (0,1)$. $\bP[Z_n = 1] = p$.
Fix $u > 0$. Let $X_0 = x > 0$. Let $X_0 = x > 0$ and
Define $X_{n+1} \coloneqq u^{Z_{n+1}} X_{n}$. define $X_{n+1} \coloneqq u^{Z_{n+1}} X_{n}$.
Then $(X_n)_n$ is a martingale,
since
\begin{IEEEeqnarray*}{rCl}
\bE[X_{n+1} |\cF_n] &=& X_n \bE[u^{Z_{n+1}}]\\
&=& X_n \left(p \cdot u + (1-p)\cdot\frac{1}{u}\right)\\
&=& X_n \left(\frac{p (u^2-1) + 1}{u}\right)\\
&=& X_n.
\end{IEEEeqnarray*}
\begin{exercise} By \autoref{doobmartingaleconvergence},
Given $u \ge 0$, find $p = p(u)$ there exists an a.s.~limit $X_\infty$.
such that $(X_n)_n$ is a martingale w.r.t.~the canonical filtration.
\end{exercise}
\todo{TODO}
By \autoref{doobmartingaleconvergence}, there is an
a.s.~limit $X_\infty$.
By the SLLN, we have By the SLLN, we have
\[ \[
\frac{1}{n} \sum_{k=1}^{n} Z_k \xrightarrow{a.s.} \bE[Z_1] = zp - 1. \frac{1}{n} \sum_{k=1}^{n} Z_k \xrightarrow{a.s.} \bE[Z_1] = 2p - 1.
\] \]
Hence Hence
\[ \[