some small changes
This commit is contained in:
parent
ed642130d9
commit
872cb3b0bb
13 changed files with 224 additions and 23 deletions
2
Makefile
2
Makefile
|
@ -1,5 +1,5 @@
|
||||||
pdf: init
|
pdf: init
|
||||||
latexmk
|
latexmk < /dev/null
|
||||||
|
|
||||||
clean:
|
clean:
|
||||||
latexmk -c
|
latexmk -c
|
||||||
|
|
|
@ -1,5 +1,17 @@
|
||||||
\section{Counterexamples}
|
\section{(Counter)examples}
|
||||||
|
|
||||||
|
Consistent families and inconsistent families
|
||||||
|
|
||||||
|
Notions of convergence
|
||||||
|
|
||||||
Exercise 4.3
|
Exercise 4.3
|
||||||
10.2
|
10.2
|
||||||
|
|
||||||
|
|
||||||
|
Martingales converging a.s.~but not in $L^1$.
|
||||||
|
|
||||||
|
Stopping times
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
21
inputs/a_2_additional_stuff.tex
Normal file
21
inputs/a_2_additional_stuff.tex
Normal file
|
@ -0,0 +1,21 @@
|
||||||
|
Important stuff not done in the lecture.
|
||||||
|
|
||||||
|
Moments:
|
||||||
|
|
||||||
|
$\bE[X^k]$
|
||||||
|
|
||||||
|
\begin{lemma}
|
||||||
|
Let $X, Y : \Omega \to [a,b]$
|
||||||
|
If $\bE[X^k] = \bE[Y^k]$,
|
||||||
|
for every $k \in \N_0$
|
||||||
|
then $X = Y$.
|
||||||
|
\end{lemma}
|
||||||
|
\begin{proof}
|
||||||
|
We have $\bE[p(X)] = \bE[p(Y)]$ for
|
||||||
|
every polynomial $p$.
|
||||||
|
Approximate $e^{\i t X}$
|
||||||
|
with polynomials and use Fourier transforms.
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
|
||||||
|
Laplace transforms
|
|
@ -1,4 +1,4 @@
|
||||||
\lecture{2}{}{}
|
\lecture{2}{2023-04-11}{Independence, Kolmogorov's consistency theorem, consistent families}
|
||||||
\section{Independence and Product Measures}
|
\section{Independence and Product Measures}
|
||||||
|
|
||||||
In order to define the notion of independence, we first need to construct
|
In order to define the notion of independence, we first need to construct
|
||||||
|
@ -80,9 +80,9 @@ to an infinite number of random variables.
|
||||||
|
|
||||||
\begin{theorem}[Kolmogorov extension / consistency theorem]
|
\begin{theorem}[Kolmogorov extension / consistency theorem]
|
||||||
\label{thm:kolmogorovconsistency}
|
\label{thm:kolmogorovconsistency}
|
||||||
Informally:
|
\footnote{Informally:
|
||||||
``Probability measures are determined by finite-dimensional marginals
|
``Probability measures are determined by finite-dimensional marginals
|
||||||
(as long as these marginals are nice)''
|
(as long as these marginals are nice)''}
|
||||||
|
|
||||||
Let $\bP_n, n \in \N$ be probability measures on $(\R^n, \cB(\R^n))$
|
Let $\bP_n, n \in \N$ be probability measures on $(\R^n, \cB(\R^n))$
|
||||||
which are \vocab{consistent},
|
which are \vocab{consistent},
|
||||||
|
@ -117,5 +117,3 @@ to an infinite number of random variables.
|
||||||
the distribution function of $X_i$.
|
the distribution function of $X_i$.
|
||||||
In the case of $F_1 = \ldots = F_n$, then $X_1,\ldots, X_n$ are i.i.d.
|
In the case of $F_1 = \ldots = F_n$, then $X_1,\ldots, X_n$ are i.i.d.
|
||||||
\end{example}
|
\end{example}
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -154,4 +154,5 @@ we are going to use the following:
|
||||||
= \lambda_n(C_1) + \lambda_n(C_2)
|
= \lambda_n(C_1) + \lambda_n(C_2)
|
||||||
\]
|
\]
|
||||||
by the definition of the finite product measure.
|
by the definition of the finite product measure.
|
||||||
|
\phantom\qedhere
|
||||||
\end{refproof}
|
\end{refproof}
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
\lecture{5}{2023-04-21}{}
|
\lecture{5}{2023-04-21}{Laws of large numbers}
|
||||||
\subsection{The Laws of Large Numbers}
|
\subsection{The Laws of Large Numbers}
|
||||||
|
|
||||||
|
|
||||||
|
@ -44,23 +44,14 @@ For the proof of (b) we need the following general result:
|
||||||
\begin{theorem}
|
\begin{theorem}
|
||||||
\label{thm2}
|
\label{thm2}
|
||||||
Let $X_1, X_2, \ldots$ be independent (but not necessarily identically distributed) random variables with $\bE[X_i] = 0$ for all $i$
|
Let $X_1, X_2, \ldots$ be independent (but not necessarily identically distributed) random variables with $\bE[X_i] = 0$ for all $i$
|
||||||
and $\sum_{i=1}^n \Var(X_i) < \infty$.
|
and
|
||||||
|
\[\sum_{i=1}^n \Var(X_i) < \infty.\]
|
||||||
Then $\sum_{n \ge 1} X_n$ converges almost surely.
|
Then $\sum_{n \ge 1} X_n$ converges almost surely.
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
|
We'll prove this later\todo{Move proof}
|
||||||
|
|
||||||
\begin{proof}
|
|
||||||
|
|
||||||
|
|
||||||
\end{proof}
|
|
||||||
\begin{question}
|
\begin{question}
|
||||||
Does the converse hold? I.e.~does $\sum_{n \ge 1} X_n < \infty$ a.s.~
|
Does the converse hold? I.e.~does $\sum_{n \ge 1} X_n < \infty$ a.s.~
|
||||||
then $\sum_{n \ge 1} \Var(X_n) < \infty$.
|
then $\sum_{n \ge 1} \Var(X_n) < \infty$.
|
||||||
\end{question}
|
\end{question}
|
||||||
This does not hold. Consider for example $X_n = \frac{1}{n^2} \delta_n + \frac{1}{n^2} \delta_{-n} + (1-\frac{2}{n^2}) \delta_0$.
|
This does not hold. Consider for example $X_n = \frac{1}{n^2} \delta_n + \frac{1}{n^2} \delta_{-n} + (1-\frac{2}{n^2}) \delta_0$.
|
||||||
|
|
||||||
\begin{refproof}{lln}
|
|
||||||
\begin{enumerate}
|
|
||||||
\item[(b)]
|
|
||||||
\end{enumerate}
|
|
||||||
\end{refproof}
|
|
||||||
|
|
||||||
|
|
|
@ -5,6 +5,7 @@
|
||||||
when the $X_n$ are independent.
|
when the $X_n$ are independent.
|
||||||
\end{goal}
|
\end{goal}
|
||||||
\begin{theorem}[Kolmogorov's three-series theorem] % Theorem 3
|
\begin{theorem}[Kolmogorov's three-series theorem] % Theorem 3
|
||||||
|
\label{thm:kolmogorovthreeseries}
|
||||||
\label{thm3}
|
\label{thm3}
|
||||||
Let $X_n$ be a family of independent random variables.
|
Let $X_n$ be a family of independent random variables.
|
||||||
\begin{enumerate}[(a)]
|
\begin{enumerate}[(a)]
|
||||||
|
@ -43,7 +44,7 @@ For the proof we'll need a slight generalization of \autoref{thm2}:
|
||||||
almost surely.
|
almost surely.
|
||||||
Let $A_n \coloneqq \{\omega : |X_n(\omega)| > C\}$.
|
Let $A_n \coloneqq \{\omega : |X_n(\omega)| > C\}$.
|
||||||
Since the first series $\sum_{n \ge 1} \bP(A_n) < \infty$,
|
Since the first series $\sum_{n \ge 1} \bP(A_n) < \infty$,
|
||||||
by Borel-Cantelli, $\bP[\text{infinitely many $A_n$ occcur}] = 0$.
|
by Borel-Cantelli, $\bP[\text{infinitely many $A_n$ occur}] = 0$.
|
||||||
|
|
||||||
|
|
||||||
For the proof of (b), suppose $\sum_{n\ge 1} X_n(\omega) < \infty$
|
For the proof of (b), suppose $\sum_{n\ge 1} X_n(\omega) < \infty$
|
||||||
|
|
|
@ -80,6 +80,7 @@ This notion of convergence will be defined in terms of characteristic functions
|
||||||
\subsection{Characteristic Functions and Fourier Transform}
|
\subsection{Characteristic Functions and Fourier Transform}
|
||||||
|
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
|
\label{def:characteristicfunction}
|
||||||
Consider $(\R, \cB(\R), \bP)$.
|
Consider $(\R, \cB(\R), \bP)$.
|
||||||
The \vocab{characteristic function} of $\bP$ is defined as
|
The \vocab{characteristic function} of $\bP$ is defined as
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
|
|
|
@ -184,6 +184,7 @@ Unfortunately, we won't prove \autoref{bochnersthm} in this lecture.
|
||||||
|
|
||||||
|
|
||||||
\begin{definition}[Convergence in distribution / weak convergence]
|
\begin{definition}[Convergence in distribution / weak convergence]
|
||||||
|
\label{def:weakconvergence}
|
||||||
We say that $\bP_n \subseteq M_1(\R)$ \vocab[Convergence!weak]{converges weakly} towards $\bP \in M_1(\R)$ (notation: $\bP_n \implies \bP$), iff
|
We say that $\bP_n \subseteq M_1(\R)$ \vocab[Convergence!weak]{converges weakly} towards $\bP \in M_1(\R)$ (notation: $\bP_n \implies \bP$), iff
|
||||||
\[
|
\[
|
||||||
\forall f \in C_b(\R)~ \int f d\bP_n \to \int f d\bP.
|
\forall f \in C_b(\R)~ \int f d\bP_n \to \int f d\bP.
|
||||||
|
|
|
@ -264,7 +264,6 @@ which converges.
|
||||||
$G_1, G_2, \ldots$ is a subsequence of $F_1, F_2,\ldots$.
|
$G_1, G_2, \ldots$ is a subsequence of $F_1, F_2,\ldots$.
|
||||||
However $G_1, G_2, \ldots$ is not converging to $F$,
|
However $G_1, G_2, \ldots$ is not converging to $F$,
|
||||||
as this would fail at $x_0$. This is a contradiction.
|
as this would fail at $x_0$. This is a contradiction.
|
||||||
|
|
||||||
\end{refproof}
|
\end{refproof}
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1,3 +1,4 @@
|
||||||
|
\pagebreak
|
||||||
\lecture{22}{2023-07-04}{Introduction Markov Chains II}
|
\lecture{22}{2023-07-04}{Introduction Markov Chains II}
|
||||||
\section{Markov Chains}
|
\section{Markov Chains}
|
||||||
\todo{Merge this with the end of lecture 21}
|
\todo{Merge this with the end of lecture 21}
|
||||||
|
|
170
inputs/lecture_23.tex
Normal file
170
inputs/lecture_23.tex
Normal file
|
@ -0,0 +1,170 @@
|
||||||
|
\lecture{23}{2023-07-06}{}
|
||||||
|
\section{Recap}
|
||||||
|
In this lecture we will recall the most important point from the lecture.
|
||||||
|
|
||||||
|
\subsection{Construction of iid random variables.}
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
\item Definition of a consistent family (\autoref{def:consistentfamily})
|
||||||
|
\item Important construction:
|
||||||
|
|
||||||
|
Consider a distribution function $F$ and define
|
||||||
|
\[
|
||||||
|
\prod_{i=1}^n (F(b_i) - F(a_i)) \text{\reflectbox{$\coloneqq$}}
|
||||||
|
\mu_n \left( (a_1,b_1] \times x \ldots \times x (a_n, b_n] \right).
|
||||||
|
\]
|
||||||
|
|
||||||
|
\item Examples of consistent and inconsistent families
|
||||||
|
\todo{Exercises}
|
||||||
|
\item Kolmogorov's consistency theorem
|
||||||
|
(\autoref{thm:kolmogorovconsistency})
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\subsection{Limit theorems}
|
||||||
|
\begin{itemize}
|
||||||
|
\item Work with iid.~random variables.
|
||||||
|
\item Notions of convergence (\autoref{def:convergence})
|
||||||
|
\item Implications between different notions of convergence (very important) and counter examples.
|
||||||
|
(\autoref{thm:convergenceimplications})
|
||||||
|
|
||||||
|
\item \begin{itemize}
|
||||||
|
\item Laws of large numbers: (\autoref{lln})
|
||||||
|
\begin{itemize}
|
||||||
|
\item WLLN: convergence in probability
|
||||||
|
\item SLLN: weak convergence
|
||||||
|
\end{itemize}
|
||||||
|
\end{itemize}
|
||||||
|
\item \autoref{thm2} (building block for SLLN):
|
||||||
|
Let $(X_n)$ be independent with mean $0$ and $\sum \sigma_n^2 < \infty$,
|
||||||
|
then $ \sum X_n $ converges a.s.
|
||||||
|
\begin{itemize}
|
||||||
|
\item Counter examples showing that $\impliedby$ does not hold in general are important
|
||||||
|
\item $\impliedby$ holds for iid.~uniformly bounded random variables
|
||||||
|
\item Application:
|
||||||
|
|
||||||
|
$\sum_{i=1}^{\infty} \frac{(\pm_1)}{n^{\frac{1}{2} + \epsilon}}$ converges a.s.~for all $\epsilon > 0$.
|
||||||
|
|
||||||
|
$\sum \frac{\pm 1}{ n^{\frac{1}{2} -\epsilon}}$ does not converge a.s.~for any $\epsilon > 0$.
|
||||||
|
\end{itemize}
|
||||||
|
\item Kolmogorov's inequality (\autoref{thm:kolmogorovineq})
|
||||||
|
\item Kolmogorov's $0-1$-law. (\autoref{kolmogorov01})
|
||||||
|
|
||||||
|
In particular, a series of independent random variables converges with probability $0$ or $1$.
|
||||||
|
|
||||||
|
\item Kolmogorov's 3 series theorem. (\autoref{thm:kolmogorovthreeseries})
|
||||||
|
\begin{itemize}
|
||||||
|
\item What are those $3$ series?
|
||||||
|
\item Applications
|
||||||
|
\end{itemize}
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\subsubsection{Fourier transform / characteristic functions / weak convegence}
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
\item Definition of Fourier transform
|
||||||
|
(\autoref{def:characteristicfunction})
|
||||||
|
\item The Fourier transform uniquely determines the probability distribution.
|
||||||
|
It is bounded, so many theorems are easily applicable.
|
||||||
|
\item Uniqueness theorem (\autoref{charfuncuniqueness}),
|
||||||
|
inversion formula (\autoref{inversionformula}), ...
|
||||||
|
\item Levy's continuity theorem (\autoref{levycontinuity}),
|
||||||
|
(\autoref{genlevycontinuity})
|
||||||
|
\item Bockner's theorem for positive definite function % TODO REF
|
||||||
|
\item Bockner's theorem for the mass at a point (\autoref{bochnersformula})
|
||||||
|
\item Related notions
|
||||||
|
\todo{TODO}
|
||||||
|
\begin{itemize}
|
||||||
|
\item Laplace transforms $\bE[e^{-\lambda X}]$ for some $\lambda > 0$
|
||||||
|
(not done in the lecture, but still useful).
|
||||||
|
\item Moments $\bE[X^k]$ (not done in the lecture, but still useful)
|
||||||
|
All moments together uniquely determine the distribution.
|
||||||
|
\end{itemize}
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\paragraph{Weak convergence}
|
||||||
|
\begin{itemize}
|
||||||
|
\item Definition of weak convergence % ( test against continuous, bounded functions).
|
||||||
|
(\autoref{def:weakconvergence})
|
||||||
|
\item Examples:
|
||||||
|
\begin{itemize}
|
||||||
|
\item $(\delta_{\frac{1}{n}})_n$,
|
||||||
|
\item $(\frac{1}{2} \delta_{-\frac{1}{n}} + \frac{1}{2} \delta_{\frac{1}{n}}$,
|
||||||
|
\item $(\cN(0, \frac{1}{n}))_n$,
|
||||||
|
\item $(\frac{1}{n} \delta_n + (1- \frac{1}{n}) \delta_{\frac{1}{n}})_n$.
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\item Non-examples: $(\delta_n)_n$
|
||||||
|
\item How does one prove weak convergence? How does one write this down in a clear way?
|
||||||
|
% TODO
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\paragraph{Convolution}
|
||||||
|
\begin{itemize}
|
||||||
|
\item Definition of convolution.
|
||||||
|
\todo{Copy from exercise sheet and write a section about this}
|
||||||
|
\item $X_i \sim \mu_i \text{ iid. }\implies X_1 + \ldots + X_n \sim \mu_1 \ast \ldots \ast \mu_n$.
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\subsubsection{CLT}
|
||||||
|
\begin{itemize}
|
||||||
|
\item Statement of the CLT
|
||||||
|
\item Several versions:
|
||||||
|
\begin{itemize}
|
||||||
|
\item iid (\autoref{clt}),
|
||||||
|
\item Lindeberg (\autoref{lindebergclt}),
|
||||||
|
\item Luyapanov (\autoref{lyapunovclt})
|
||||||
|
\end{itemize}
|
||||||
|
\item How to apply this? Exercises!
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\subsection{Conditional expectation}
|
||||||
|
\begin{itemize}
|
||||||
|
\item Definition and existence of conditional expectation for $X \in L^1(\Omega, \cF, \bP)$
|
||||||
|
\item If $H = L^2(\Omega, \cF, \bP)$, then $\bE[ \cdot | \cG]$
|
||||||
|
is the (unique) projection on the closed subspace $L^2(\Omega, \cG, \bP)$.
|
||||||
|
Why is this a closed subspace? Why is the projection orthogonal?
|
||||||
|
\item Radon-Nikodym Theorem (Proof not relevant for the exam)
|
||||||
|
\item (Non-)examples of mutually absolutely continuous measures
|
||||||
|
Singularity in this context? % TODO
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\subsection{Martingales}
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
\item Definition of Martingales
|
||||||
|
\item Doob's convergence theorem, Upcrossing inequality
|
||||||
|
(downcrossings for submartingales)
|
||||||
|
\item Examples of Martingales converging a.s.~but not in $L^1$
|
||||||
|
\item Bounded in $L^2$ $\implies$ convergence in $L^2$.
|
||||||
|
\item Martingale increments are orthogonal in $L^2$!
|
||||||
|
\item Doob's (sub-)martingale inequalities
|
||||||
|
\item $\bP[\sup_{k \le n} M_k \ge x]$ $\leadsto$ Look at martingale inequalities!
|
||||||
|
Estimates might come from Doob's inequalities if $(M_k)_k$ is a (sub-)martingale.
|
||||||
|
\item Doob's $L^p$ convergence theorem.
|
||||||
|
\begin{itemize}
|
||||||
|
\item Why is $p > 1$ important? \textbf{Role of Banach-Alaoglu}
|
||||||
|
\item This is an important proof.
|
||||||
|
\end{itemize}
|
||||||
|
\item Uniform integrability % TODO
|
||||||
|
\item What are stopping times?
|
||||||
|
\item (Non-)examples of stopping times
|
||||||
|
\item \textbf{Optional stopping theorem} - be really comfortable with this.
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
|
||||||
|
\subsection{Markov Chains}
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
\item What are Markov chains?
|
||||||
|
\item State space, initial distribution
|
||||||
|
\item Important examples
|
||||||
|
\item \textbf{What is the relation between Martingales and Markov chains?}
|
||||||
|
$u$ \vocab{harmonic} $\iff Lu = 0$.
|
||||||
|
(sub-/super-) harmonic $u$ $\iff$ for a Markov chain $(X_n)$,
|
||||||
|
$u(X_n)$ is a (sub-/super-)martingale
|
||||||
|
\item Dirichlet problem
|
||||||
|
(Not done in the lecture)
|
||||||
|
\item ... (more in Probability Theory II)
|
||||||
|
\end{itemize}
|
|
@ -3,6 +3,7 @@ from the lecture on stochastic.
|
||||||
|
|
||||||
\subsection{Notions of Convergence}
|
\subsection{Notions of Convergence}
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
|
\label{def:convergence}
|
||||||
Fix a probability space $(\Omega,\cF,\bP)$.
|
Fix a probability space $(\Omega,\cF,\bP)$.
|
||||||
Let $X, X_1, X_2,\ldots$ be random variables.
|
Let $X, X_1, X_2,\ldots$ be random variables.
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
|
@ -30,9 +31,10 @@ from the lecture on stochastic.
|
||||||
\]
|
\]
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\end{definition}
|
\end{definition}
|
||||||
% TODO Connect to ANaIII
|
% TODO Connect to AnaIII
|
||||||
|
|
||||||
\begin{theorem}
|
\begin{theorem}
|
||||||
|
\label{thm:convergenceimplications}
|
||||||
\vspace{10pt}
|
\vspace{10pt}
|
||||||
Let $X$ be a random variable and $X_n, n \in \N$ a sequence of random variables.
|
Let $X$ be a random variable and $X_n, n \in \N$ a sequence of random variables.
|
||||||
Then
|
Then
|
||||||
|
@ -80,6 +82,9 @@ from the lecture on stochastic.
|
||||||
&=& \epsilon \cdot c > 0 \lightning
|
&=& \epsilon \cdot c > 0 \lightning
|
||||||
\end{IEEEeqnarray*}
|
\end{IEEEeqnarray*}
|
||||||
\todo{Improve this with Markov}
|
\todo{Improve this with Markov}
|
||||||
|
\todo{Counter examples}
|
||||||
|
\todo{weak convergence}
|
||||||
|
\todo{$L^p$ convergence}
|
||||||
\end{subproof}
|
\end{subproof}
|
||||||
\begin{claim}
|
\begin{claim}
|
||||||
$X_n \xrightarrow{\bP} X \notimplies X_n\xrightarrow{L^1} X$
|
$X_n \xrightarrow{\bP} X \notimplies X_n\xrightarrow{L^1} X$
|
||||||
|
|
Reference in a new issue