some small changes
This commit is contained in:
parent
872cb3b0bb
commit
95f823683f
2 changed files with 16 additions and 16 deletions
|
@ -1,8 +1,8 @@
|
|||
\lecture{23}{2023-07-06}{}
|
||||
\section{Recap}
|
||||
In this lecture we will recall the most important point from the lecture.
|
||||
\lecture{23}{2023-07-06}{Recap}
|
||||
\subsection{Recap}
|
||||
In this lecture we recall the most important point from the lecture.
|
||||
|
||||
\subsection{Construction of iid random variables.}
|
||||
\subsubsection{Construction of iid random variables.}
|
||||
|
||||
\begin{itemize}
|
||||
\item Definition of a consistent family (\autoref{def:consistentfamily})
|
||||
|
@ -20,20 +20,18 @@ In this lecture we will recall the most important point from the lecture.
|
|||
(\autoref{thm:kolmogorovconsistency})
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Limit theorems}
|
||||
\subsubsection{Limit theorems}
|
||||
\begin{itemize}
|
||||
\item Work with iid.~random variables.
|
||||
\item Notions of convergence (\autoref{def:convergence})
|
||||
\item Implications between different notions of convergence (very important) and counter examples.
|
||||
(\autoref{thm:convergenceimplications})
|
||||
|
||||
\item \begin{itemize}
|
||||
\item Laws of large numbers: (\autoref{lln})
|
||||
\item \item Laws of large numbers: (\autoref{lln})
|
||||
\begin{itemize}
|
||||
\item WLLN: convergence in probability
|
||||
\item SLLN: weak convergence
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
\item \autoref{thm2} (building block for SLLN):
|
||||
Let $(X_n)$ be independent with mean $0$ and $\sum \sigma_n^2 < \infty$,
|
||||
then $ \sum X_n $ converges a.s.
|
||||
|
@ -58,7 +56,7 @@ In this lecture we will recall the most important point from the lecture.
|
|||
\end{itemize}
|
||||
\end{itemize}
|
||||
|
||||
\subsubsection{Fourier transform / characteristic functions / weak convegence}
|
||||
\subsubsubsection{Fourier transform / characteristic functions / weak convegence}
|
||||
|
||||
\begin{itemize}
|
||||
\item Definition of Fourier transform
|
||||
|
@ -101,13 +99,13 @@ In this lecture we will recall the most important point from the lecture.
|
|||
\paragraph{Convolution}
|
||||
\begin{itemize}
|
||||
\item Definition of convolution.
|
||||
\todo{Copy from exercise sheet and write a section about this}
|
||||
\todo{Copy from exercise sheet and write a subsection about this}
|
||||
\item $X_i \sim \mu_i \text{ iid. }\implies X_1 + \ldots + X_n \sim \mu_1 \ast \ldots \ast \mu_n$.
|
||||
\end{itemize}
|
||||
|
||||
|
||||
|
||||
\subsubsection{CLT}
|
||||
\subsubsubsection{CLT}
|
||||
\begin{itemize}
|
||||
\item Statement of the CLT
|
||||
\item Several versions:
|
||||
|
@ -119,7 +117,7 @@ In this lecture we will recall the most important point from the lecture.
|
|||
\item How to apply this? Exercises!
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Conditional expectation}
|
||||
\subsubsection{Conditional expectation}
|
||||
\begin{itemize}
|
||||
\item Definition and existence of conditional expectation for $X \in L^1(\Omega, \cF, \bP)$
|
||||
\item If $H = L^2(\Omega, \cF, \bP)$, then $\bE[ \cdot | \cG]$
|
||||
|
@ -130,7 +128,7 @@ In this lecture we will recall the most important point from the lecture.
|
|||
Singularity in this context? % TODO
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Martingales}
|
||||
\subsubsection{Martingales}
|
||||
|
||||
\begin{itemize}
|
||||
\item Definition of Martingales
|
||||
|
@ -154,7 +152,7 @@ In this lecture we will recall the most important point from the lecture.
|
|||
\end{itemize}
|
||||
|
||||
|
||||
\subsection{Markov Chains}
|
||||
\subsubsection{Markov Chains}
|
||||
|
||||
\begin{itemize}
|
||||
\item What are Markov chains?
|
||||
|
|
|
@ -73,7 +73,9 @@ from the lecture on stochastic.
|
|||
\begin{subproof}
|
||||
We have $\bE[|X_n - X|] \to 0$.
|
||||
Suppose there exists an $\epsilon > 0$ such that
|
||||
$\lim_{n \to \infty} \bP[|X_n - X| > \epsilon] = c > 0$.
|
||||
$\limsup\limits_{n \to \infty} \bP[|X_n - X| > \epsilon] = c > 0$.
|
||||
W.l.o.g.~$\lim_{n \to \infty} \bP[|X_n - X| > \epsilon] = c$,
|
||||
otherwise choose an appropriate subsequence.
|
||||
We have
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
\bE[|X_n - X|] &=& \int_\Omega |X_n - X | d\bP\\
|
||||
|
@ -90,7 +92,7 @@ from the lecture on stochastic.
|
|||
$X_n \xrightarrow{\bP} X \notimplies X_n\xrightarrow{L^1} X$
|
||||
\end{claim}
|
||||
\begin{subproof}
|
||||
Take $([0,1], \cB([0,1 ]), \lambda)([0,1], \cB([0,1 ]), \lambda)$
|
||||
Take $([0,1], \cB([0,1 ]), \lambda)$
|
||||
and define $X_n \coloneqq n \One_{[0, \frac{1}{n}]}$.
|
||||
We have $\bP[|X_n| > \epsilon] = \frac{1}{n}$
|
||||
for $n$ large enough.
|
||||
|
|
Reference in a new issue