This commit is contained in:
Josia Pietsch 2023-07-18 23:58:27 +02:00
parent 76aeeb8d22
commit 9cf7536921
Signed by: jrpie
GPG key ID: E70B571D66986A2D
4 changed files with 32 additions and 10 deletions

View file

@ -74,6 +74,16 @@ The Radon Nikodym theorem is the converse of that:
w.r.t.~$\mu$. w.r.t.~$\mu$.
This is written as $\nu \ll \mu$. This is written as $\nu \ll \mu$.
\end{definition} \end{definition}
\begin{definition}+
Two measures $\mu$ and $\nu$ on a measure space $(\Omega, \cF)$
are called \vocab{singular},
denoted $\mu \bot \nu$,
iff there exists $A \in \cF$ such that
\[
\mu(A) = \nu(A^c) = 0.
\]
\end{definition}
With \autoref{radonnikodym} we get a very short proof of the existence With \autoref{radonnikodym} we get a very short proof of the existence
of conditional expectation: of conditional expectation:
@ -171,6 +181,7 @@ we have gathered up to time $n$.
Typically $\cF_n = \sigma(X_1, \ldots, X_n)$ for a sequence of random variables. Typically $\cF_n = \sigma(X_1, \ldots, X_n)$ for a sequence of random variables.
\begin{definition} \begin{definition}
\label{def:martingale}
Let $(\cF_n)$ be a filtration and Let $(\cF_n)$ be a filtration and
$X_1,\ldots,X_n$ be random variables such that $X_i \in L^1(\bP)$. $X_1,\ldots,X_n$ be random variables such that $X_i \in L^1(\bP)$.
Then we say that $(X_n)_{n \ge 1}$ is an $(\cF_n)_n$-\vocab{martingale} Then we say that $(X_n)_{n \ge 1}$ is an $(\cF_n)_n$-\vocab{martingale}

View file

@ -20,6 +20,7 @@ Hence the same holds for submartingales, i.e.
\end{question} \end{question}
\begin{example}[A martingale not converging in $L^1$ ] \begin{example}[A martingale not converging in $L^1$ ]
\label{ex:martingale-not-converging-in-l1}
Fix $u > 1$ and let $p = \frac{1}{1+u}$. Fix $u > 1$ and let $p = \frac{1}{1+u}$.
Let $ (Z_n)_{n \ge 1}$ be i.i.d.~$\pm 1$ with Let $ (Z_n)_{n \ge 1}$ be i.i.d.~$\pm 1$ with
$\bP[Z_n = 1] = p$. $\bP[Z_n = 1] = p$.

View file

@ -23,6 +23,7 @@
\end{goal} \end{goal}
\begin{definition} \begin{definition}
\label{def:ui}
A sequence of random variables $(X_n)_n$ is called \vocab{uniformly integrable} (UI), A sequence of random variables $(X_n)_n$ is called \vocab{uniformly integrable} (UI),
if if
\[\forall \epsilon > 0 .~\exists K > 0 .~ \forall n.~ \[\forall \epsilon > 0 .~\exists K > 0 .~ \forall n.~
@ -245,4 +246,5 @@ Let $(\Omega, \cF, \bP)$ as always and let $(\cF_n)_n$ always be a filtration.
Let $(X_n)_n$ be a martingale bounded in $L^p$. Let $(X_n)_n$ be a martingale bounded in $L^p$.
Then there exists a random variable $X \in L^p$, such that Then there exists a random variable $X \in L^p$, such that
$X_n = \bE[X | \cF_n]$ for all $n$. $X_n = \bE[X | \cF_n]$ for all $n$.
In particular, $X_n \xrightarrow{L^p} X$.
\end{theorem} \end{theorem}

View file

@ -117,7 +117,7 @@ In this lecture we recall the most important point from the lecture.
\begin{itemize} \begin{itemize}
\item iid (\autoref{clt}), \item iid (\autoref{clt}),
\item Lindeberg (\autoref{lindebergclt}), \item Lindeberg (\autoref{lindebergclt}),
\item Luyapanov (\autoref{lyapunovclt}) \item Lyapanov (\autoref{lyapunovclt})
\end{itemize} \end{itemize}
\item How to apply this? Exercises! \item How to apply this? Exercises!
\end{itemize} \end{itemize}
@ -125,10 +125,12 @@ In this lecture we recall the most important point from the lecture.
\subsubsection{Conditional expectation} \subsubsection{Conditional expectation}
\begin{itemize} \begin{itemize}
\item Definition and existence of conditional expectation for $X \in L^1(\Omega, \cF, \bP)$ \item Definition and existence of conditional expectation for $X \in L^1(\Omega, \cF, \bP)$
(\autoref{conditionalexpectation})
\item If $H = L^2(\Omega, \cF, \bP)$, then $\bE[ \cdot | \cG]$ \item If $H = L^2(\Omega, \cF, \bP)$, then $\bE[ \cdot | \cG]$
is the (unique) projection on the closed subspace $L^2(\Omega, \cG, \bP)$. is the (unique) projection on the closed subspace $L^2(\Omega, \cG, \bP)$.
Why is this a closed subspace? Why is the projection orthogonal? Why is this a closed subspace? Why is the projection orthogonal?
\item Radon-Nikodym Theorem (Proof not relevant for the exam) \item Radon-Nikodym Theorem \ref{radonnikodym}
(Proof not relevant for the exam)
\item (Non-)examples of mutually absolutely continuous measures \item (Non-)examples of mutually absolutely continuous measures
Singularity in this context? % TODO Singularity in this context? % TODO
\end{itemize} \end{itemize}
@ -136,25 +138,31 @@ In this lecture we recall the most important point from the lecture.
\subsubsection{Martingales} \subsubsection{Martingales}
\begin{itemize} \begin{itemize}
\item Definition of Martingales \item Definition of Martingales (\autoref{def:martingale})
\item Doob's convergence theorem, Upcrossing inequality \item Doob's convergence theorem (\autoref{doobmartingaleconvergence}),
Upcrossing inequality (\autoref{lec17l1}, \autoref{lec17l2}, \autoref{lec17l3})
(downcrossings for submartingales) (downcrossings for submartingales)
\item Examples of Martingales converging a.s.~but not in $L^1$ \item Examples of Martingales converging a.s.~but not in $L^1$
\item Bounded in $L^2$ $\implies$ convergence in $L^2$. (\autoref{ex:martingale-not-converging-in-l1})
\item Bounded in $L^2$ $\implies$ convergence in $L^2$
(\autoref{martingaleconvergencel2}).
\item Martingale increments are orthogonal in $L^2$! \item Martingale increments are orthogonal in $L^2$!
(\autoref{martingaleincrementsorthogonal})
\item Doob's (sub-)martingale inequalities \item Doob's (sub-)martingale inequalities
(\autoref{dooblp}),
\item $\bP[\sup_{k \le n} M_k \ge x]$ $\leadsto$ Look at martingale inequalities! \item $\bP[\sup_{k \le n} M_k \ge x]$ $\leadsto$ Look at martingale inequalities!
Estimates might come from Doob's inequalities if $(M_k)_k$ is a (sub-)martingale. Estimates might come from Doob's inequalities if $(M_k)_k$ is a (sub-)martingale.
\item Doob's $L^p$ convergence theorem. \item Doob's $L^p$ convergence theorem
(\autoref{ceismartingale}, \autoref{martingaleisce}).
\begin{itemize} \begin{itemize}
\item Why is $p > 1$ important? \textbf{Role of Banach-Alaoglu} \item Why is $p > 1$ important? \textbf{Role of Banach-Alaoglu}
\item This is an important proof. \item This is an important proof.
\end{itemize} \end{itemize}
\item Uniform integrability % TODO \item Uniform integrability (\autoref{def:ui})
\item What are stopping times? \autoref{def:stopping-time} \item What are stopping times? (\autoref{def:stopping-time})
\item (Non-)examples of stopping times \item (Non-)examples of stopping times
\item \textbf{Optional stopping theorem} - be really comfortable with this. \item \textbf{Optional stopping theorem} (\autoref{optionalstopping})
\autoref{optionalstopping} - be really comfortable with this.
\end{itemize} \end{itemize}