summary
This commit is contained in:
parent
76aeeb8d22
commit
9cf7536921
4 changed files with 32 additions and 10 deletions
|
@ -74,6 +74,16 @@ The Radon Nikodym theorem is the converse of that:
|
||||||
w.r.t.~$\mu$.
|
w.r.t.~$\mu$.
|
||||||
This is written as $\nu \ll \mu$.
|
This is written as $\nu \ll \mu$.
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
\begin{definition}+
|
||||||
|
Two measures $\mu$ and $\nu$ on a measure space $(\Omega, \cF)$
|
||||||
|
are called \vocab{singular},
|
||||||
|
denoted $\mu \bot \nu$,
|
||||||
|
iff there exists $A \in \cF$ such that
|
||||||
|
\[
|
||||||
|
\mu(A) = \nu(A^c) = 0.
|
||||||
|
\]
|
||||||
|
\end{definition}
|
||||||
|
|
||||||
|
|
||||||
With \autoref{radonnikodym} we get a very short proof of the existence
|
With \autoref{radonnikodym} we get a very short proof of the existence
|
||||||
of conditional expectation:
|
of conditional expectation:
|
||||||
|
@ -171,6 +181,7 @@ we have gathered up to time $n$.
|
||||||
Typically $\cF_n = \sigma(X_1, \ldots, X_n)$ for a sequence of random variables.
|
Typically $\cF_n = \sigma(X_1, \ldots, X_n)$ for a sequence of random variables.
|
||||||
|
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
|
\label{def:martingale}
|
||||||
Let $(\cF_n)$ be a filtration and
|
Let $(\cF_n)$ be a filtration and
|
||||||
$X_1,\ldots,X_n$ be random variables such that $X_i \in L^1(\bP)$.
|
$X_1,\ldots,X_n$ be random variables such that $X_i \in L^1(\bP)$.
|
||||||
Then we say that $(X_n)_{n \ge 1}$ is an $(\cF_n)_n$-\vocab{martingale}
|
Then we say that $(X_n)_{n \ge 1}$ is an $(\cF_n)_n$-\vocab{martingale}
|
||||||
|
|
|
@ -20,6 +20,7 @@ Hence the same holds for submartingales, i.e.
|
||||||
\end{question}
|
\end{question}
|
||||||
|
|
||||||
\begin{example}[A martingale not converging in $L^1$ ]
|
\begin{example}[A martingale not converging in $L^1$ ]
|
||||||
|
\label{ex:martingale-not-converging-in-l1}
|
||||||
Fix $u > 1$ and let $p = \frac{1}{1+u}$.
|
Fix $u > 1$ and let $p = \frac{1}{1+u}$.
|
||||||
Let $ (Z_n)_{n \ge 1}$ be i.i.d.~$\pm 1$ with
|
Let $ (Z_n)_{n \ge 1}$ be i.i.d.~$\pm 1$ with
|
||||||
$\bP[Z_n = 1] = p$.
|
$\bP[Z_n = 1] = p$.
|
||||||
|
|
|
@ -23,6 +23,7 @@
|
||||||
\end{goal}
|
\end{goal}
|
||||||
|
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
|
\label{def:ui}
|
||||||
A sequence of random variables $(X_n)_n$ is called \vocab{uniformly integrable} (UI),
|
A sequence of random variables $(X_n)_n$ is called \vocab{uniformly integrable} (UI),
|
||||||
if
|
if
|
||||||
\[\forall \epsilon > 0 .~\exists K > 0 .~ \forall n.~
|
\[\forall \epsilon > 0 .~\exists K > 0 .~ \forall n.~
|
||||||
|
@ -245,4 +246,5 @@ Let $(\Omega, \cF, \bP)$ as always and let $(\cF_n)_n$ always be a filtration.
|
||||||
Let $(X_n)_n$ be a martingale bounded in $L^p$.
|
Let $(X_n)_n$ be a martingale bounded in $L^p$.
|
||||||
Then there exists a random variable $X \in L^p$, such that
|
Then there exists a random variable $X \in L^p$, such that
|
||||||
$X_n = \bE[X | \cF_n]$ for all $n$.
|
$X_n = \bE[X | \cF_n]$ for all $n$.
|
||||||
|
In particular, $X_n \xrightarrow{L^p} X$.
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
|
|
|
@ -117,7 +117,7 @@ In this lecture we recall the most important point from the lecture.
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item iid (\autoref{clt}),
|
\item iid (\autoref{clt}),
|
||||||
\item Lindeberg (\autoref{lindebergclt}),
|
\item Lindeberg (\autoref{lindebergclt}),
|
||||||
\item Luyapanov (\autoref{lyapunovclt})
|
\item Lyapanov (\autoref{lyapunovclt})
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\item How to apply this? Exercises!
|
\item How to apply this? Exercises!
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
@ -125,10 +125,12 @@ In this lecture we recall the most important point from the lecture.
|
||||||
\subsubsection{Conditional expectation}
|
\subsubsection{Conditional expectation}
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item Definition and existence of conditional expectation for $X \in L^1(\Omega, \cF, \bP)$
|
\item Definition and existence of conditional expectation for $X \in L^1(\Omega, \cF, \bP)$
|
||||||
|
(\autoref{conditionalexpectation})
|
||||||
\item If $H = L^2(\Omega, \cF, \bP)$, then $\bE[ \cdot | \cG]$
|
\item If $H = L^2(\Omega, \cF, \bP)$, then $\bE[ \cdot | \cG]$
|
||||||
is the (unique) projection on the closed subspace $L^2(\Omega, \cG, \bP)$.
|
is the (unique) projection on the closed subspace $L^2(\Omega, \cG, \bP)$.
|
||||||
Why is this a closed subspace? Why is the projection orthogonal?
|
Why is this a closed subspace? Why is the projection orthogonal?
|
||||||
\item Radon-Nikodym Theorem (Proof not relevant for the exam)
|
\item Radon-Nikodym Theorem \ref{radonnikodym}
|
||||||
|
(Proof not relevant for the exam)
|
||||||
\item (Non-)examples of mutually absolutely continuous measures
|
\item (Non-)examples of mutually absolutely continuous measures
|
||||||
Singularity in this context? % TODO
|
Singularity in this context? % TODO
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
@ -136,25 +138,31 @@ In this lecture we recall the most important point from the lecture.
|
||||||
\subsubsection{Martingales}
|
\subsubsection{Martingales}
|
||||||
|
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item Definition of Martingales
|
\item Definition of Martingales (\autoref{def:martingale})
|
||||||
\item Doob's convergence theorem, Upcrossing inequality
|
\item Doob's convergence theorem (\autoref{doobmartingaleconvergence}),
|
||||||
|
Upcrossing inequality (\autoref{lec17l1}, \autoref{lec17l2}, \autoref{lec17l3})
|
||||||
(downcrossings for submartingales)
|
(downcrossings for submartingales)
|
||||||
\item Examples of Martingales converging a.s.~but not in $L^1$
|
\item Examples of Martingales converging a.s.~but not in $L^1$
|
||||||
\item Bounded in $L^2$ $\implies$ convergence in $L^2$.
|
(\autoref{ex:martingale-not-converging-in-l1})
|
||||||
|
\item Bounded in $L^2$ $\implies$ convergence in $L^2$
|
||||||
|
(\autoref{martingaleconvergencel2}).
|
||||||
\item Martingale increments are orthogonal in $L^2$!
|
\item Martingale increments are orthogonal in $L^2$!
|
||||||
|
(\autoref{martingaleincrementsorthogonal})
|
||||||
\item Doob's (sub-)martingale inequalities
|
\item Doob's (sub-)martingale inequalities
|
||||||
|
(\autoref{dooblp}),
|
||||||
\item $\bP[\sup_{k \le n} M_k \ge x]$ $\leadsto$ Look at martingale inequalities!
|
\item $\bP[\sup_{k \le n} M_k \ge x]$ $\leadsto$ Look at martingale inequalities!
|
||||||
Estimates might come from Doob's inequalities if $(M_k)_k$ is a (sub-)martingale.
|
Estimates might come from Doob's inequalities if $(M_k)_k$ is a (sub-)martingale.
|
||||||
\item Doob's $L^p$ convergence theorem.
|
\item Doob's $L^p$ convergence theorem
|
||||||
|
(\autoref{ceismartingale}, \autoref{martingaleisce}).
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item Why is $p > 1$ important? \textbf{Role of Banach-Alaoglu}
|
\item Why is $p > 1$ important? \textbf{Role of Banach-Alaoglu}
|
||||||
\item This is an important proof.
|
\item This is an important proof.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\item Uniform integrability % TODO
|
\item Uniform integrability (\autoref{def:ui})
|
||||||
\item What are stopping times? \autoref{def:stopping-time}
|
\item What are stopping times? (\autoref{def:stopping-time})
|
||||||
\item (Non-)examples of stopping times
|
\item (Non-)examples of stopping times
|
||||||
\item \textbf{Optional stopping theorem} - be really comfortable with this.
|
\item \textbf{Optional stopping theorem} (\autoref{optionalstopping})
|
||||||
\autoref{optionalstopping}
|
- be really comfortable with this.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
|
|
||||||
|
|
Reference in a new issue