diff --git a/inputs/lecture_13.tex b/inputs/lecture_13.tex index aea6d1a..ae3b09f 100644 --- a/inputs/lecture_13.tex +++ b/inputs/lecture_13.tex @@ -16,7 +16,9 @@ if $X_1, X_2,\ldots$ are i.i.d.~with $ \mu = \bE[X_1]$, Assume $X_1, X_2, \ldots,$ are independent (but not necessarily identically distributed) with $\mu_i = \bE[X_i] < \infty$ and $\sigma_i^2 = \Var(X_i) < \infty$. Let $S_n = \sqrt{\sum_{i=1}^{n} \sigma_i^2}$ and assume that - \[\lim_{n \to \infty} \frac{1}{S_n^2} \bE\left[(X_i - \mu_i)^2 \One_{|X_i - \mu_i| > \epsilon S_n}\right] = 0\] + \[\lim_{n \to \infty} \frac{1}{S_n^2} \sum_{i=1}^{n} \bE\left[ + (X_i - \mu_i)^2 \One_{|X_i - \mu_i| > \epsilon S_n} + \right] = 0\] for all $\epsilon > 0$ (\vocab{Lindeberg condition}\footnote{``The truncated variance is negligible compared to the variance.''}).