imporved typesetting of renewal theorem
This commit is contained in:
parent
80664eba78
commit
b7aeefb42c
1 changed files with 18 additions and 8 deletions
|
@ -172,21 +172,31 @@ In order to prove \autoref{thm2}, we need the following:
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
By SLLN, $\frac{S_n}{n} \xrightarrow{a.s.} m$ as $n \to \infty$.
|
By SLLN, $\frac{S_n}{n} \xrightarrow{a.s.} m$ as $n \to \infty$.
|
||||||
Note that $N_t \uparrow \infty$ a.s.~as $t \to \infty (\ast\ast)$, since
|
Note that
|
||||||
$\{N_t \ge n\} = \{X_1 + \ldots+ X_n \le t\}$ thus $N_t \uparrow \infty$ as $t \uparrow \infty$.
|
\begin{equation}
|
||||||
|
N_t \uparrow \infty \text{ a.s.~as } t \to \infty, \label{eqn:renewalnt}
|
||||||
|
\end{equation}
|
||||||
|
since $\{N_t \ge n\} = \{X_1 + \ldots+ X_n \le t\}$.
|
||||||
|
|
||||||
\begin{claim}
|
\begin{claim}
|
||||||
$\bP[\frac{S_n}{n} \xrightarrow{n \to \infty} m , N_t \xrightarrow{t \to \infty} \infty] = 1$.
|
$\bP[\frac{S_n}{n} \xrightarrow{n \to \infty} m
|
||||||
|
\land N_t \xrightarrow{t \to \infty} \infty] = 1$.
|
||||||
\end{claim}
|
\end{claim}
|
||||||
\begin{subproof}
|
\begin{subproof}
|
||||||
Let $A \coloneqq \{\omega: \frac{S_n(\omega)}{n} \xrightarrow{n \to \infty} m\}$ and $B \coloneqq \{\omega : N_t(\omega \xrightarrow{t \to \infty} \infty\}$.
|
Let $A \coloneqq \{\omega: \frac{S_n(\omega)}{n} \xrightarrow{n \to \infty} m\}$
|
||||||
By the SLLN, we have $\bP(A^C) = 0$ and $\ast\ast \implies \bP(B^C) = 0$.
|
and $B \coloneqq \{\omega : N_t(\omega) \xrightarrow{t \to \infty} \infty\}$.
|
||||||
|
By the SLLN we have $\bP(A^C) = 0$
|
||||||
|
and by \eqref{eqn:renewalnt} it holds that $\bP(B^C) = 0$.
|
||||||
\end{subproof}
|
\end{subproof}
|
||||||
|
|
||||||
Equivalently, $\bP\left[ \frac{S_{N_t}}{N_t} \xrightarrow{t \to \infty} m, \frac{S_{N_t + 1}}{N_t + 1} \xrightarrow{t \to \infty} m \right] = 1$.
|
Equivalently,
|
||||||
|
$\bP\left[ \frac{S_{N_t}}{N_t} \xrightarrow{t \to \infty} m
|
||||||
|
\land \frac{S_{N_t + 1}}{N_t + 1} \xrightarrow{t \to \infty} m \right] = 1$.
|
||||||
|
|
||||||
By definition, we have $S_{N_t} \le t \le S_{N_t + t}$.
|
By definition, we have $S_{N_t} \le t \le S_{N_t + 1}$.
|
||||||
Then $\frac{S_{N_t}}{N_t} \le \frac{t}{N_t} \le S_{N_t + 1}{N_t} \le \frac{S_{N_t + 1}}{N_t + 1} \cdot \frac{N_t + 1}{N_t}$.
|
Thus
|
||||||
|
\[\frac{S_{N_t}}{N_t} \le \frac{t}{N_t} \le \frac {S_{N_t + 1}}{N_t}
|
||||||
|
\le \frac{S_{N_t + 1}}{N_t + 1} \cdot \frac{N_t + 1}{N_t}.\]
|
||||||
Hence $\frac{t}{N_t} \to m$.
|
Hence $\frac{t}{N_t} \to m$.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
Reference in a new issue