some facts
This commit is contained in:
parent
f097e9adb9
commit
bf808be83e
3 changed files with 60 additions and 5 deletions
|
@ -83,6 +83,35 @@ This will be the weakest notion of convergence, hence it is called
|
||||||
This notion of convergence will be defined in terms of
|
This notion of convergence will be defined in terms of
|
||||||
characteristic functions of Fourier transforms.
|
characteristic functions of Fourier transforms.
|
||||||
|
|
||||||
|
\subsection{Convolutions${}^\dagger$}
|
||||||
|
|
||||||
|
\begin{definition}+[Convolution]
|
||||||
|
Let $\mu$ and $\nu$ be probability measures on $\R^d$
|
||||||
|
with Lebesgue densities $f_\mu$ and $f_\nu$.
|
||||||
|
Then the \vocab{convolution} of $\mu$ and $\nu$,
|
||||||
|
$\mu \ast \nu$,
|
||||||
|
is the probability measure on $\R^d$
|
||||||
|
with Lebesgue density
|
||||||
|
\[
|
||||||
|
f_{\mu \ast \nu}(x) \coloneqq
|
||||||
|
\int_{\R^d} f_\mu(x - t) f\nu(t) \lambda^d(\dif t)
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end{definition}
|
||||||
|
|
||||||
|
\begin{fact}+[Exercise 6.1]
|
||||||
|
If $X_1,X_2,\ldots$ are independent with
|
||||||
|
distributions $X_1 \sim \mu_1$,
|
||||||
|
$X_2 \sim \mu_2, \ldots$,
|
||||||
|
then $X_1 + \ldots + X_n$
|
||||||
|
has distribution
|
||||||
|
\[
|
||||||
|
\mu_1 \ast \mu_2 \ast \ldots \ast \mu_n.
|
||||||
|
\]
|
||||||
|
\end{fact}
|
||||||
|
\todo{TODO}
|
||||||
|
|
||||||
|
|
||||||
\subsection{Characteristic Functions and Fourier Transform}
|
\subsection{Characteristic Functions and Fourier Transform}
|
||||||
|
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
|
@ -106,7 +135,30 @@ We have
|
||||||
\item We have $\phi(0) = 1$.
|
\item We have $\phi(0) = 1$.
|
||||||
\item $|\phi(t)| \le \int_{\R} |e^{\i t x} | \bP(dx) = 1$.
|
\item $|\phi(t)| \le \int_{\R} |e^{\i t x} | \bP(dx) = 1$.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\todo{Properties of characteristic functions}
|
|
||||||
|
\begin{fact}+
|
||||||
|
Let $X$, $Y$ be independent random variables
|
||||||
|
and $a,b \in \R$.
|
||||||
|
Then
|
||||||
|
\begin{itemize}
|
||||||
|
\item $\phi_{a X + b}(t) = e^{\i t b} \phi_X(\frac{t}{a})$,
|
||||||
|
\item $\phi_{X + Y}(t) = \phi_X(t) + \phi_Y(t)$.
|
||||||
|
\end{itemize}
|
||||||
|
\end{fact}
|
||||||
|
\begin{proof}
|
||||||
|
We have
|
||||||
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
|
\phi_{a X + b}(t) &=& \bE[e^{\i t (aX + b)}}]\\
|
||||||
|
&=& e^{\i t b} \bE[e^{\i t a X}]\\
|
||||||
|
&=& e^{\i t b} \phi_X(\frac{t}{a}).
|
||||||
|
\end{IEEEeqnarray*}
|
||||||
|
Furthermore
|
||||||
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
|
\phi_{X + Y}(t) &=& \bE[e^{\i t (X + Y)}]\\
|
||||||
|
&=& \bE[e^{\i t X}] \bE[e^{\i t Y}]\\
|
||||||
|
&=& \phi_X(t) \phi_Y(t).
|
||||||
|
\end{IEEEeqnarray*}
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
\begin{remark}
|
\begin{remark}
|
||||||
Suppose $(\Omega, \cF, \bP)$ is an arbitrary probability space and
|
Suppose $(\Omega, \cF, \bP)$ is an arbitrary probability space and
|
||||||
|
|
|
@ -1,7 +1,5 @@
|
||||||
\lecture{10}{2023-05-09}{}
|
\lecture{10}{2023-05-09}{}
|
||||||
|
|
||||||
% RECAP
|
|
||||||
|
|
||||||
First, we will prove some of the most important facts about Fourier transforms.
|
First, we will prove some of the most important facts about Fourier transforms.
|
||||||
|
|
||||||
We consider $(\R, \cB(\R))$.
|
We consider $(\R, \cB(\R))$.
|
||||||
|
|
|
@ -93,7 +93,13 @@ In this lecture we recall the most important point from the lecture.
|
||||||
|
|
||||||
\item Non-examples: $(\delta_n)_n$
|
\item Non-examples: $(\delta_n)_n$
|
||||||
\item How does one prove weak convergence? How does one write this down in a clear way?
|
\item How does one prove weak convergence? How does one write this down in a clear way?
|
||||||
% TODO
|
\begin{itemize}
|
||||||
|
\item \autoref{lec10_thm1},
|
||||||
|
\item Levy's continuity theorem
|
||||||
|
\ref{levycontinuity},
|
||||||
|
\item Generalization of Levy's continuity theorem
|
||||||
|
\ref{genlevycontinuity}
|
||||||
|
\end{itemize}
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
\paragraph{Convolution}
|
\paragraph{Convolution}
|
||||||
|
@ -104,7 +110,6 @@ In this lecture we recall the most important point from the lecture.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\subsubsubsection{CLT}
|
\subsubsubsection{CLT}
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item Statement of the CLT
|
\item Statement of the CLT
|
||||||
|
|
Reference in a new issue