diff --git a/inputs/lecture_14.tex b/inputs/lecture_14.tex index a485088..441f31a 100644 --- a/inputs/lecture_14.tex +++ b/inputs/lecture_14.tex @@ -78,6 +78,15 @@ We now want to generalize this to arbitrary random variables. is a constant random variable. \end{remark} +\begin{definition}[Conditional probability] + Let $A \subseteq \Omega$ be an event and $\cG \subseteq \cF$ + a sub-$\sigma$-algebra. + We define the \vocab{conditional probability} of $A$ given $\cG$ by + \[ + \bP[A | \cG] \coloneqq \bE[\One_A | \cG]. + \] +\end{definition} + \paragraph{Plan} We will give two different proves of \autoref{conditionalexpectation}. The first one will use orthogonal projections. diff --git a/inputs/lecture_21.tex b/inputs/lecture_21.tex index 4475ba0..a8ae54e 100644 --- a/inputs/lecture_21.tex +++ b/inputs/lecture_21.tex @@ -1,5 +1,4 @@ \lecture{21}{2023-06-29}{} -% TODO: replace bf This is the last lecture relevant for the exam. (Apart from lecture 22 which will be a repetion). @@ -12,18 +11,18 @@ This is the last lecture relevant for the exam. \begin{notation} Let $E$ be a complete, separable metric space (e.g.~$E = \R$). Suppose that for all $x \in E$ we have a probability measure - $\bfP(x, \dif y)$ on $E$. + $\mathbf{P}(x, \dif y)$ on $E$. % i.e. $\mu(A) \coloneqq \int_A \bP(x, \dif y)$ is a probability measure. Such a probability measure is a called a \vocab{transition probability measure}. \end{notation} -\begin{examle} +\begin{example} $E =\R$, - \[\bfP(x, \dif y) = \frac{1}{\sqrt{2 \pi} } e^{- \frac{(x-y)^2}{2}} \dif y\] + \[\mathbf{P}(x, \dif y) = \frac{1}{\sqrt{2 \pi} } e^{- \frac{(x-y)^2}{2}} \dif y\] is a transition probability measure. -\end{examle} +\end{example} \begin{example}[Simple random walk as a transition probability measure] - $E = \Z$, $\bfP(x, \dif y)$ + $E = \Z$, $\mathbf{P}(x, \dif y)$ assigns mass $\frac{1}{2}$ to $y = x+1$ and $y = x -1$. \end{example} @@ -32,26 +31,26 @@ This is the last lecture relevant for the exam. $x \in E$ define \[ - (\bfP f)(x) \coloneqq \int_E f(y) \bfP(x, \dif y). + (\mathbf{P} f)(x) \coloneqq \int_E f(y) \mathbf{P}(x, \dif y). \] - This $\bfP$ is called a \vocab{transition operator}. + This $\mathbf{P}$ is called a \vocab{transition operator}. \end{definition} \begin{fact} - If $f \ge 0$, then $(\bfP f)(\cdot ) \ge 0$. + If $f \ge 0$, then $(\mathbf{P} f)(\cdot ) \ge 0$. - If $f \equiv 1$, we have $(\bfP f) \equiv 1$. + If $f \equiv 1$, we have $(\mathbf{P} f) \equiv 1$. \end{fact} \begin{notation} - Let $\bfI$ denote the \vocab{identity operator}, + Let $\mathbf{I}$ denote the \vocab{identity operator}, i.e. \[ - (\bfI f)(x) = f(x) + (\mathbf{I} f)(x) = f(x) \] for all $f$. - Then for a transition operator $\bfP$ we write + Then for a transition operator $\mathbf{P}$ we write \[ - \bfL \coloneqq \bfI - \bfP. + \mathbf{L} \coloneqq \mathbf{I} - \mathbf{P}. \] \end{notation} @@ -71,16 +70,16 @@ is the unique solution to this problem. Let $(\Omega, \cF, \{\cF_n\}_n, \bP_x)$ be a filtered probability space, where for every $x \in \R$, $\bP_x$ is a probability measure. - Let $\bE_x$ denote expectation with respect to $\bfP(x, \cdot )$. + Let $\bE_x$ denote expectation with respect to $\mathbf{P}(x, \cdot )$. Then $(X_n)_{n \ge 0}$ is a \vocab{Markov chain} starting at $x \in \R$ with \vocab[Markov chain!Transition probability]{transition probability} - $\bfP(x, \cdot )$ if + $\mathbf{P}(x, \cdot )$ if \begin{enumerate}[(i)] \item $\bP_x[X_0 = x] = 1$, \item for all bounded, measurable $f: \R \to \R$, \[\bE_x[f(X_{n+1}) | \cF_n] \overset{\text{a.s.}}{=}% \bE_{x}[f(X_{n+1}) | X_n] = % - \int f(y) \bfP(X_n, \dif y).\] + \int f(y) \mathbf{P}(X_n, \dif y).\] \end{enumerate} (Recall $\cF_n = \sigma(X_1,\ldots, X_n)$.) \end{definition} @@ -92,12 +91,6 @@ is the unique solution to this problem. \] \end{example} -\begin{definition}[Conditional probability] - \[ - \bP[A | \cG] \coloneqq \bE[\One_A | \cG]. - \] -\end{definition} - \begin{example} Let $\xi_i$ be i.i.d.~with$\bP[\xi_i = 1] = \bP[\xi_i = -1] = \frac{1}{2}$ and define $X_n \coloneqq \sum_{i=1}^{n} \xi_i$. @@ -105,14 +98,8 @@ is the unique solution to this problem. Intuitively, conditioned on $X_n$, $X_{n+1}$ should be independent of $\sigma(X_1,\ldots, X_{n-1})$. - For a set $B$, we have - \[ - \bP_0[X_{n+1} \in B| \sigma(X_1,\ldots, X_n)] - = \bE[\One_{X_n + \xi_{n+1} \in B} | \sigma(X_1,\ldots, X_n)] - = \bE[\One_{X_n + \xi_{n+1} \in B} | \sigma(X_n)]. - \] - \begin{claim} + For a set $B$, we have $\bE[\One_{X_{n+1} \in B} | \sigma(X_1,\ldots, X_n)] = \bE[\One_{X_{n+1} \in B} | \sigma(X_n)]$. \end{claim} \begin{subproof} @@ -120,16 +107,7 @@ is the unique solution to this problem. \end{subproof} \end{example} - -%TODO - - - - - - - -{ \huge\color{red} +{ \large\color{red} New information after this point is not relevant for the exam. } Stopping times and optional stopping are very relevant for the exam,