typo
This commit is contained in:
parent
c926a076e7
commit
eb2d40258a
1 changed files with 4 additions and 5 deletions
|
@ -133,7 +133,7 @@ However, Fourier analysis is not only useful for continuous probability density
|
||||||
RHS &=& \lim_{T \to \infty} \frac{1}{2 T} \int_{-T}^T e^{-\i t x} \int_{\R} e^{\i t y} \bP(\dif y) \\
|
RHS &=& \lim_{T \to \infty} \frac{1}{2 T} \int_{-T}^T e^{-\i t x} \int_{\R} e^{\i t y} \bP(\dif y) \\
|
||||||
&\overset{\text{Fubini}}{=}& \lim_{T \to \infty} \frac{1}{2 T} \int_\R \bP(dy) \int_{-T}^T \underbrace{e^{-\i t (y - x)}}_{\cos(t ( y - x)) + \i \sin(t (y-x))} \dif t\\
|
&\overset{\text{Fubini}}{=}& \lim_{T \to \infty} \frac{1}{2 T} \int_\R \bP(dy) \int_{-T}^T \underbrace{e^{-\i t (y - x)}}_{\cos(t ( y - x)) + \i \sin(t (y-x))} \dif t\\
|
||||||
&=& \lim_{T \to \infty} \frac{1}{2T} \int_{\R} \bP(\dif y) \int_{-T}^T \cos(t(y - x)) \dif t\\
|
&=& \lim_{T \to \infty} \frac{1}{2T} \int_{\R} \bP(\dif y) \int_{-T}^T \cos(t(y - x)) \dif t\\
|
||||||
&=& \lim_{T \to \infty} \frac{1}{2 T }\int_{\R} \frac{2 \sin(T (y-x)}{T (y-x)} \bP(\dif y)\\
|
&=& \lim_{T \to \infty} \frac{1}{2 T }\int_{\R} \frac{2 \sin(T (y-x))}{T (y-x)} \bP(\dif y)\\
|
||||||
\end{IEEEeqnarray*}
|
\end{IEEEeqnarray*}
|
||||||
Furthermore
|
Furthermore
|
||||||
\[
|
\[
|
||||||
|
@ -141,10 +141,11 @@ However, Fourier analysis is not only useful for continuous probability density
|
||||||
1, &y = x,\\
|
1, &y = x,\\
|
||||||
0, &y \neq x.
|
0, &y \neq x.
|
||||||
\end{cases}
|
\end{cases}
|
||||||
|
% TODO TODO TODO
|
||||||
\]
|
\]
|
||||||
Hence
|
Hence
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
\lim_{T \to \infty} \frac{1}{2 T }\int_{\R} \frac{2 \sin(T (y-x)}{T (y-x)} \bP(\dif y) &=& \bP\left( \{x\}\right)
|
\lim_{T \to \infty} \frac{1}{2 T }\int_{\R} \frac{2 \sin(T (y-x))}{T (y-x)} \bP(\dif y) &=& \bP\left( \{x\}\right)
|
||||||
\end{IEEEeqnarray*}
|
\end{IEEEeqnarray*}
|
||||||
% TODO by dominated convergence?
|
% TODO by dominated convergence?
|
||||||
\end{refproof}
|
\end{refproof}
|
||||||
|
@ -154,7 +155,7 @@ However, Fourier analysis is not only useful for continuous probability density
|
||||||
Let $\phi$ be the characteristic function of $\bP \in M_1(\lambda)$.
|
Let $\phi$ be the characteristic function of $\bP \in M_1(\lambda)$.
|
||||||
Then
|
Then
|
||||||
\begin{enumerate}[(a)]
|
\begin{enumerate}[(a)]
|
||||||
\item $\phi(0) = 1$, $|\phi(1)| \le t$ and $\phi(\cdot )$ is continuous.
|
\item $\phi(0) = 1$, $|\phi(t)| \le 1$ and $\phi(\cdot )$ is continuous.
|
||||||
\item $\phi$ is a \vocab{positive definite function},
|
\item $\phi$ is a \vocab{positive definite function},
|
||||||
i.e.~
|
i.e.~
|
||||||
\[\forall t_1,\ldots, t_n \in \R, (c_1,\ldots,c_n) \in \C^n ~ \sum_{j,k = 1}^n c_j \overline{c_k} \phi(t_j - t_k) \ge 0
|
\[\forall t_1,\ldots, t_n \in \R, (c_1,\ldots,c_n) \in \C^n ~ \sum_{j,k = 1}^n c_j \overline{c_k} \phi(t_j - t_k) \ge 0
|
||||||
|
@ -164,8 +165,6 @@ However, Fourier analysis is not only useful for continuous probability density
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
\begin{refproof}{thm:lec_10thm5}
|
\begin{refproof}{thm:lec_10thm5}
|
||||||
Part (a) is obvious.
|
Part (a) is obvious.
|
||||||
% TODO
|
|
||||||
|
|
||||||
|
|
||||||
For part (b) we have:
|
For part (b) we have:
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
|
|
Reference in a new issue