Lyapunov CLT
This commit is contained in:
parent
b501f621aa
commit
ecf530d05f
1 changed files with 2 additions and 1 deletions
|
@ -35,7 +35,8 @@ if $X_1, X_2,\ldots$ are i.i.d.~with $ \mu = \bE[X_1]$,
|
|||
and $S_n \coloneqq \sqrt{\sum_{i=1}^n \sigma_i^2}$.
|
||||
Then, assume that, for some $\delta > 0$,
|
||||
\[
|
||||
\lim_{n \to \infty} \sum_{i=1}^{n} \bE[(X_i - \mu_i)^{2 + \delta}] = 0
|
||||
\lim_{n \to \infty} \frac{1}{S_n^{2+\delta}}
|
||||
\sum_{i=1}^{n} \bE[(X_i - \mu_i)^{2 + \delta}] = 0
|
||||
\]
|
||||
(\vocab{Lyapunov condition}).
|
||||
Then the CLT holds.
|
||||
|
|
Reference in a new issue