branching process
This commit is contained in:
parent
5e9da4cef1
commit
ef988f8a5c
4 changed files with 63 additions and 9 deletions
|
@ -99,7 +99,7 @@ characteristic functions of Fourier transforms.
|
|||
If $\mu$ and $\nu$ have Lebesgue densities $f_\mu$ and $f_\nu$,
|
||||
then the convolution has Lebesgue density
|
||||
\[
|
||||
f_{\mu \ast \nu}(x) \coloneqq
|
||||
f_{\mu \ast \nu}(x) =
|
||||
\int_{\R^d} f_\mu(x - t) f_\nu(t) \lambda^d(\dif t).
|
||||
\]
|
||||
\end{fact}
|
||||
|
|
|
@ -274,13 +274,12 @@ We have shown, that $\mu_{n_k} \implies \mu$ along a subsequence.
|
|||
We still need to show that $\mu_n \implies \mu$.
|
||||
\begin{fact}
|
||||
Suppose $a_n$ is a bounded sequence in $\R$,
|
||||
such that any subsequence has a subsequence
|
||||
that converges to $a \in \R$.
|
||||
such that any convergent subsequence converges to $a \in \R$.
|
||||
Then $a_n \to a$.
|
||||
\end{fact}
|
||||
\begin{subproof}
|
||||
\notes
|
||||
\end{subproof}
|
||||
% \begin{subproof}
|
||||
% \notes
|
||||
% \end{subproof}
|
||||
Assume that $\mu_n$ does not converge to $\mu$.
|
||||
By \autoref{lec10_thm1}, pick a continuity point $x_0$ of $F$,
|
||||
such that $F_n(x_0) \not\to F(x_0)$.
|
||||
|
@ -292,6 +291,11 @@ which converges.
|
|||
$G_1, G_2, \ldots$ is a subsequence of $F_1, F_2,\ldots$.
|
||||
However $G_1, G_2, \ldots$ is not converging to $F$,
|
||||
as this would fail at $x_0$. This is a contradiction.
|
||||
\end{refproof}
|
||||
\begin{refproof}{genlevycontinuity}
|
||||
% TODO TODO TODO
|
||||
|
||||
|
||||
\end{refproof}
|
||||
|
||||
% IID is over now
|
||||
|
|
|
@ -183,9 +183,23 @@ Recall
|
|||
\bE(X Y | \cG) \le \bE(|X|^p | \cG)^{\frac{1}{p}} \bE(|Y|^q | \cG)^{\frac{1}{q}}.
|
||||
\]
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
\todo{Exercise}
|
||||
\end{proof}
|
||||
% TODO
|
||||
% \begin{proof}
|
||||
% Take some $G \in \cG$.
|
||||
% We first consider the case of $|X(\omega)|^p, |Y(\omega)|^p > 0$
|
||||
% a.s.~for $\omega \in G$.
|
||||
% Then
|
||||
% \begin{IEEEeqnarray*}{rCl}
|
||||
% \int_G\frac{\bE[|XY| ~ |\cG]}%
|
||||
% {\bE[\bE[|X|^p | \cG]^{\frac{1}{p}} \bE[|Y|^p| \cG]^{\frac{1}{q}}}
|
||||
% \dif \bP
|
||||
% &=& \int_G \frac{|X|}{\bE[|X|^p]^{\frac{1}{p}}} \frac{|Y|}{\bE[|Y|^q]^{\frac{1}{q}}}
|
||||
% \dif \bP\\
|
||||
% &\le& \left(\int_G \frac{|X|^p}{\bE[|X|^p]} \dif \bP\right)^p
|
||||
% \left(\int_G \frac{|Y|^q}{\bE[|Y|^q]} \dif \bP\right)^q\\
|
||||
% &=& \bE[\One_G]
|
||||
% \end{IEEEeqnarray*}
|
||||
% \end{proof}
|
||||
|
||||
\begin{theorem}[Tower property]
|
||||
\label{ceprop10}
|
||||
|
|
|
@ -119,6 +119,42 @@ we need the following theorem, which we won't prove here:
|
|||
we get the convergence.
|
||||
\end{refproof}
|
||||
|
||||
\begin{example}+[\vocab{Branching Process}; Exercise 10.1, 12.4]
|
||||
Let $(Y_{n,k})_{n \in \N_0, k \in \N}$ be i.i.d.~with values in $\N_0$
|
||||
such that $0 < \bE[Y_{n,k}] = m < \infty$.
|
||||
Define
|
||||
\[
|
||||
S_0 \coloneqq 1, S_n \coloneqq \sum_{k=1}^{S_{n-1}} Y_{n-1,k}
|
||||
\]
|
||||
and let $M_n \coloneqq \frac{S_n}{m^n}$.
|
||||
$S_n$ models the size of a population.
|
||||
|
||||
\begin{claim}
|
||||
$M_n$ is a martingale.
|
||||
\end{claim}
|
||||
\begin{subproof}
|
||||
We have
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
\bE[M_{n+1} - M_n | \cF_n]
|
||||
&=& \frac{1}{m^n} \left( \frac{1}{m}\sum_{k=1}^{S_{n}} \bE[X_{n,k}] - S_n\right)\\
|
||||
&=& \frac{1}{m^n}(S_n - S_n).
|
||||
\end{IEEEeqnarray*}
|
||||
\end{subproof}
|
||||
|
||||
\begin{claim}
|
||||
$(M_n)_{n \in \N}$ is bounded in $L^2$ iff $m > 1$.
|
||||
\end{claim}
|
||||
\todo{TODO}
|
||||
\begin{claim}
|
||||
If $m > 1$ and $M_n \to M_\infty$,
|
||||
then
|
||||
\[
|
||||
\Var(M_\infty) = \sigma^2(m(m-1))^{-1}.
|
||||
\]
|
||||
\end{claim}
|
||||
\todo{TODO}
|
||||
\end{example}
|
||||
|
||||
\subsection{Stopping Times}
|
||||
|
||||
\begin{definition}[Stopping time]
|
||||
|
|
Reference in a new issue