boundedness
This commit is contained in:
parent
9310eae807
commit
fae60388ab
7 changed files with 75 additions and 21 deletions
|
@ -1,21 +1,66 @@
|
||||||
Important stuff not done in the lecture.
|
\section{Additional Material}
|
||||||
|
|
||||||
Moments:
|
% Important stuff not done in the lecture.
|
||||||
|
|
||||||
$\bE[X^k]$
|
\subsection{Notions of boundedness}
|
||||||
|
The following is just a short overview of all the notions of
|
||||||
|
boundedness we used in the lecture.
|
||||||
|
|
||||||
\begin{lemma}
|
\begin{definition}+[Boundedness]
|
||||||
Let $X, Y : \Omega \to [a,b]$
|
Let $\cX$ be a set of random variables.
|
||||||
If $\bE[X^k] = \bE[Y^k]$,
|
We say that $\cX$ is
|
||||||
for every $k \in \N_0$
|
\begin{itemize}
|
||||||
then $X = Y$.
|
\item \vocab{uniformly bounded} iff
|
||||||
\end{lemma}
|
\[\sup_{X \in \cX} \sup_{\omega \in \Omega} |X(\omega)| < \infty,\]
|
||||||
\begin{proof}
|
\item \vocab{dominated by $f \in L^p$} for $p \ge 1$ iff
|
||||||
We have $\bE[p(X)] = \bE[p(Y)]$ for
|
\[
|
||||||
every polynomial $p$.
|
\forall X \in \cX .~ |X| \le f,
|
||||||
Approximate $e^{\i t X}$
|
\]
|
||||||
with polynomials and use Fourier transforms.
|
\item \vocab{bounded in $L^p$} for $p \ge 1$ iff
|
||||||
\end{proof}
|
\[
|
||||||
|
\sup_{X \in \cX} \|X\|_{L^p} < \infty,
|
||||||
|
\]
|
||||||
|
\item \vocab{uniformly integrable} iff
|
||||||
|
\[
|
||||||
|
\forall \epsilon > 0 .~\exists K .~ \forall X \in \cX.~
|
||||||
|
\bE[|X| \One_{|X| > K}] < \epsilon.
|
||||||
|
\]
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\end{definition}
|
||||||
|
|
||||||
|
\begin{fact}+
|
||||||
|
Let $\cX$ be a set of random variables.
|
||||||
|
Let $1 < p \le q < \infty$
|
||||||
|
Then the following implications hold:
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\node at (0,2.5) (ub) {$\cX$ is uniformly bounded};
|
||||||
|
\node at (-2.5,1.5) (dq) {$\cX$ is dominated by $f \in L^q$};
|
||||||
|
\node at (-2.5,0.5) (dp) {$\cX$ is dominated by $f \in L^p$};
|
||||||
|
\node at (2.5,1.0) (bq) {$\cX$ is bounded in $L^q$};
|
||||||
|
\node at (2.5,0) (bp) {$\cX$ is bounded in $L^p$};
|
||||||
|
\node at (-2.5,-0.5) (d1) {$\cX$ is dominated by $f \in L^1$};
|
||||||
|
\node at (0,-1.5) (ui) {$\cX$ is uniformly integrable};
|
||||||
|
\node at (2.5,-2.5) (b1) {$\cX$ is bounded in $L^1$};
|
||||||
|
\draw[double equal sign distance, -implies] (ub) -- (dq);
|
||||||
|
% \draw[double equal sign distance, -implies] (ub) -- (bq);
|
||||||
|
\draw[double equal sign distance, -implies] (bq) -- (bp);
|
||||||
|
\draw[double equal sign distance, -implies] (dq) -- (dp);
|
||||||
|
\draw[double equal sign distance, -implies] (dq) -- (bq);
|
||||||
|
\draw[double equal sign distance, -implies] (dp) -- (bp);
|
||||||
|
\draw[double equal sign distance, -implies] (bp) -- (ui);
|
||||||
|
\draw[double equal sign distance, -implies] (dp) -- (d1);
|
||||||
|
\draw[double equal sign distance, -implies] (d1) -- (ui);
|
||||||
|
\draw[double equal sign distance, -implies] (ui) -- (b1);
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{figure}
|
||||||
|
\end{fact}
|
||||||
|
|
||||||
|
|
||||||
Laplace transforms
|
|
||||||
|
|
||||||
|
|
||||||
|
\subsection{Laplace Transforms}
|
||||||
|
\todo{Write something about Laplace Transforms}
|
||||||
|
|
|
@ -22,7 +22,11 @@ First, let us recall some basic definitions:
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
\begin{definition}+
|
||||||
|
Let $X$ be a random variable and $k \in \N$.
|
||||||
|
Then the $k$-th \vocab{moment} of $X$ is defined as
|
||||||
|
$\bE[X^k]$.
|
||||||
|
\end{definition}
|
||||||
|
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
A \vocab{random variable} $X : (\Omega, \cF) \to (\R, \cB(\R))$
|
A \vocab{random variable} $X : (\Omega, \cF) \to (\R, \cB(\R))$
|
||||||
|
@ -63,6 +67,7 @@ The converse to this fact is also true:
|
||||||
See theorem 2.4.3 in Stochastik.
|
See theorem 2.4.3 in Stochastik.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
|
|
||||||
\begin{example}[Some important probability distribution functions]\hfill
|
\begin{example}[Some important probability distribution functions]\hfill
|
||||||
\begin{enumerate}[(1)]
|
\begin{enumerate}[(1)]
|
||||||
\item \vocab{Uniform distribution} on $[0,1]$:
|
\item \vocab{Uniform distribution} on $[0,1]$:
|
||||||
|
|
|
@ -161,7 +161,7 @@ More formally:
|
||||||
The idea of `` $\implies$ '' will lead to coupling. % TODO ?
|
The idea of `` $\implies$ '' will lead to coupling. % TODO ?
|
||||||
\end{remark}
|
\end{remark}
|
||||||
A proof of \autoref{thm5} can be found in the notes.\notes
|
A proof of \autoref{thm5} can be found in the notes.\notes
|
||||||
\begin{example}[Application of \autoref{thm5}]
|
\begin{example}[Application of \autoref{thm4}]
|
||||||
The series $\sum_{n} \frac{1}{n^{\frac{1}{2} + \epsilon}}$
|
The series $\sum_{n} \frac{1}{n^{\frac{1}{2} + \epsilon}}$
|
||||||
does not converge for $\epsilon < \frac{1}{2}$.
|
does not converge for $\epsilon < \frac{1}{2}$.
|
||||||
However
|
However
|
||||||
|
|
|
@ -183,7 +183,7 @@ However, some subsets can be easily described, e.g.
|
||||||
|
|
||||||
Since $\phi$ is Lipschitz,
|
Since $\phi$ is Lipschitz,
|
||||||
$ X_n \xrightarrow{\bP} X \implies \phi(X_n) \xrightarrow{\bP} \phi(X)$.
|
$ X_n \xrightarrow{\bP} X \implies \phi(X_n) \xrightarrow{\bP} \phi(X)$.
|
||||||
By the bounded convergence theorem % TODO
|
By the bounded convergence theorem, \autoref{thm:boundedconvergence},
|
||||||
$|\phi(X_n)| \le k \implies \int | \phi(X_n) - \phi(X)| \dif \bP \to 0$.
|
$|\phi(X_n)| \le k \implies \int | \phi(X_n) - \phi(X)| \dif \bP \to 0$.
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -122,6 +122,7 @@ we need the following theorem, which we won't prove here:
|
||||||
\subsection{Stopping Times}
|
\subsection{Stopping Times}
|
||||||
|
|
||||||
\begin{definition}[Stopping time]
|
\begin{definition}[Stopping time]
|
||||||
|
\label{def:stopping-time}
|
||||||
A random variable $T: \Omega \to \N_0 \cup \{\infty\}$ on a filtered probability space $(\Omega, \cF, \{\cF_n\}_n, \bP)$ is called a \vocab{stopping time},
|
A random variable $T: \Omega \to \N_0 \cup \{\infty\}$ on a filtered probability space $(\Omega, \cF, \{\cF_n\}_n, \bP)$ is called a \vocab{stopping time},
|
||||||
if
|
if
|
||||||
\[
|
\[
|
||||||
|
|
|
@ -151,9 +151,10 @@ In this lecture we recall the most important point from the lecture.
|
||||||
\item This is an important proof.
|
\item This is an important proof.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\item Uniform integrability % TODO
|
\item Uniform integrability % TODO
|
||||||
\item What are stopping times?
|
\item What are stopping times? \autoref{def:stopping-time}
|
||||||
\item (Non-)examples of stopping times
|
\item (Non-)examples of stopping times
|
||||||
\item \textbf{Optional stopping theorem} - be really comfortable with this.
|
\item \textbf{Optional stopping theorem} - be really comfortable with this.
|
||||||
|
\autoref{optionalstopping}
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -17,7 +17,7 @@
|
||||||
\tableofcontents
|
\tableofcontents
|
||||||
\cleardoublepage
|
\cleardoublepage
|
||||||
|
|
||||||
%\mainmatter
|
%\mainatter
|
||||||
|
|
||||||
\input{inputs/intro.tex}
|
\input{inputs/intro.tex}
|
||||||
|
|
||||||
|
@ -55,6 +55,8 @@
|
||||||
\section{Appendix}
|
\section{Appendix}
|
||||||
\input{inputs/a_0_distributions.tex}
|
\input{inputs/a_0_distributions.tex}
|
||||||
\end{landscape}
|
\end{landscape}
|
||||||
|
\pagebreak
|
||||||
|
\input{inputs/a_2_additional_stuff.tex}
|
||||||
\input{inputs/lecture_23.tex}
|
\input{inputs/lecture_23.tex}
|
||||||
|
|
||||||
\cleardoublepage
|
\cleardoublepage
|
||||||
|
|
Reference in a new issue