\begin{refproof}{ceismartingale} By the tower property (\autoref{cetower}) it is clear that $(\bE[X | \cF_n])_n$ is a martingale. First step: Assume that $X$ is bounded. Then, by \autoref{cejensen}, $|X_n| \le \bE[|X| | \cF_n]$, hence $\sup_{\substack{n \in \N \\ \omega \in \Omega}} | X_n(\omega)| < \infty$. Thus $(X_n)_n$ is a martingale in $L^{\infty} \subseteq L^2$. By the convergence theorem for martingales in $L^2$ % TODO REF there exists a random variable $Y$, such that $X_n \xrightarrow{L^2} Y$. Fix $m \in \N$ and $A \in \cF_m$. Then \begin{IEEEeqnarray*}{rCl} \int_A Y \dif \bP &=& \lim_{n \to \infty} \int_A X_n \dif \bP\\ &=& \lim_{n \to \infty} \bE[X_n \One_A]\\ &=& \lim_{n \to \infty} \bE[\bE[X | \cF_n] \One_A]\\ &\overset{A \in \cF_n}{=}& \lim_{\substack{n \to \infty\\n \ge m}} \bE[X \One_A]\\ \end{IEEEeqnarray*} Hence $\int_A Y \dif \bP = \int_A X \dif \bP$ for all $m \in \N, A \in \cF_m$. Since $\cF = \sigma\left( \bigcup \cF_n \right)$ this holds for all $A \in \cF$. Hence $X = Y$ a.s., so $X_n \xrightarrow{L^2} X$. Since $(X_n)_n$ is uniformly bounded, this also means $X_n \xrightarrow{L^p} X$. Second step: Now let $X \in L^p$ be general and define \[ X'(\omega) \coloneqq \begin{cases} X(\omega)& \text{ if } |X(\omega)| \le M,\\ 0&\text{ otherwise} \end{cases} \] for some $M > 0$. Then $X' \in L^\infty$ and \begin{IEEEeqnarray*}{rCl} \int | X - X'|^p \dif \bP &=& \int_{\{|X| > M\} } |X|^p \dif \bP \xrightarrow{M \to \infty} 0 \end{IEEEeqnarray*} as $\bP$ is \vocab{regular}, \todo{Definition?} i.e.~$\forall \epsilon > 0 \exists k . \bP[|X|^p \in [-k,k] \ge 1-\epsilon$. % Take some $\epsilon > 0$ and $M$ large enough such that % \[ % \int |X - X'| \dif \bP < \epsilon. % \] % Let $(X_n')_n$ be the martingale given by $(\bE[X' | \cF_n])_n$. % Then $X_n' \xrightarrow{L^p} X'$ by the first step. % It is % \begin{IEEEeqnarray*}{rCl} % \|X_n - X_n'\|_{L^p}^p &=& \bE[\bE[X - X' | \cF_n]^{p}]\\ % &\overset{\text{Jensen}}{\le}& \bE[\bE[(X- X')^p | \cF_n]\\ % &=& \|X - X'\|_{L^p}^p\\ % &<& \epsilon. % \end{IEEEeqnarray*} Hence \[ \|X_n - X\|_{L^p} \le |X_n - X_n'|_{L^p} + |X_n' - X'|_{L^p} + | X - X'|_{L^p} \le 3 \epsilon. \] Thus $X_n \xrightarrow{L^p} X$. \end{refproof} For the proof of \autoref{martingaleisce}, we need the following theorem, which we won't prove here: \begin{theorem}[Banach Alaoglu] \label{banachalaoglu} Let $X$ be a normed vector space and $X^\ast$ its continuous dual. Then the closed unit ball in $X^\ast$ is compact w.r.t.~the ${\text{weak}}^\ast$ topology. \end{theorem} \begin{fact} We have $L^p \cong (L^q)^\ast$ for $\frac{1}{p} + \frac{1}{q} = 1$ via \begin{IEEEeqnarray*}{rCl} L^p &\longrightarrow & (L^q)^\ast \\ f &\longmapsto & (g \mapsto \int g f \dif d\bP) \end{IEEEeqnarray*} We also have $(L^1)^\ast \cong L^\infty$, however $ (L^\infty)^\ast \not\cong L^1$. \end{fact} \begin{refproof}{martingaleisce} Since $(X_n)_n$ is bounded in $L^p$, by \autoref{banachalaoglu}, there exists $X \in L^p$ and a subsequence $(X_{n_k})_k$ such that for all $Y \in L^q$ ($\frac{1}{p} + \frac{1}{q} = 1$ ) \[ \int X_{n_k} Y \dif \bP \to \int XY \dif \bP \] (Note that this argument does not work for $p = 1$, because $(L^\infty)^\ast \not\cong L^1$). Let $A \in \cF_m$ for some fixed $m$ and write $Y = \One_A$. Then \begin{IEEEeqnarray*}{rCl} \int_A X \dif \bP &=& \lim_{k \to \infty} \int_A X_{n_k} \dif \bP\\ &=& \lim_{k \to \infty} \bE[X_{n_k} \One_A]\\ &\overset{\text{for }n_k \ge m}{=}& \int_{k \to \infty} \bE[X_m \One_A]. \end{IEEEeqnarray*} Hence $X_n = \bE[X | \cF_m]$ by the uniqueness of conditional expectation and by \autoref{ceismartingale}, we get the convergence. \end{refproof}