% Lecture 13 2023-05 %The difficult part is to show \autoref{levycontinuity}. %This is the last lecture, where we will deal with independent random variables. We have seen, that if $X_1, X_2,\ldots$ are i.i.d.~with $ \mu = \bE[X_1]$, $\sigma^2 = \Var(X_1)$, then $\frac{\sum_{i=1}^{n} (X_i - \mu)}{\sigma \sqrt{n} } \xrightarrow{(d)} \cN(0,1)$. \begin{question} What happens if $X_1, X_2,\ldots$ are independent, but not identically distributed? Do we still have a CLT? \end{question} \begin{theorem}[Lindeberg CLT] \label{lindebergclt} Assume $X_1, X_2, \ldots,$ are independent (but not necessarily identically distributed) with $\mu_i = \bE[X_i] < \infty$ and $\sigma_i^2 = \Var(X_i) < \infty$. Let $S_n = \sqrt{\sum_{i=1}^{n} \sigma_i^2}$ and assume that $\lim_{n \to \infty} \frac{1}{S_n^2} \bE\left[(X_i - \mu_i)^2 \One_{|X_i - \mu_i| > \epsilon \S_n}\right] = 0$ for all $\epsilon > 0$ (\vocab{Lindeberg condition}, ``The truncated variance is negligible compared to the variance.''). Then the CLT holds, i.e.~ \[ \frac{\sum_{i=1}^n (X_i - \mu_i)}{S_n} \xrightarrow{(d)} \cN(0,1). \] \end{theorem} \begin{theorem}[Lyapunov condition] \label{lyapunovclt} Let $X_1, X_2,\ldots$ be independent, $\mu_i = \bE[X_i] < \infty$, $\sigma_i^2 = \Var(X_i) < \infty$ and $S_n \coloneqq \sqrt{\sum_{i=1}^n \sigma_i^2}$. Then, assume that, for some $\delta > 0$, \[ \lim_{n \to \infty} \sum_{i=1}^{n} \bE[(X_i - \mu_i)^{2 + \delta}] = 0 \] (\vocab{Lyapunov condition}). Then the CLT holds. \end{theorem} \begin{remark} The Lyapunov condition implies the Lindeberg condition. (Exercise). \end{remark} We will not prove the \autoref{linebergclt} or \autoref{lyapunovclt} in this lecture. However, they are quite important. We will now sketch the proof of \autoref{levycontinuity}, details can be found in the notes.\todo{Complete this} A generalized version of \autoref{levycontinuity} is the following: \begin{theorem}[A generalized version of Levy's continuity \autoref{levycontinuity}] \label{genlevycontinuity} Suppose we have random variables $(X_n)_n$ such that $\bE[e^{\i t X_n}] \xrightarrow{n \to \infty} \phi(t)$ for all $t \in \R$ for some function $\phi$ on $\R$. Then the following are equivalent: \begin{enumerate}[(a)] \item The distribution of $X_n$ is \vocab[Distribution!tight]{tight} (dt. ``straff''), i.e.~$\lim_{a \to \infty} \sup_{n \in \N} \bP[|X_n| > a] = 0$. \item $X_n \xrightarrow{(d)} X$ for some real-valued random variable $X$. \item $\phi$ is the characteristic function of $X$. \item $\phi$ is continuous on all of $\R$. \item $\phi$ is continuous at $0$. \end{enumerate} \end{theorem} \begin{example} Let $Z \sim \cN(0,1)$ and $X_n \coloneqq n Z$. We have $\phi_{X_n}(t) = \bE[[e^{\i t X_n}] = e^{-\frac{1}{2} t^2 n^2} \xrightarrow{n \to \infty} \One_{\{t = 0\} }$. $\One_{\{t = 0\}}$ is not continuous at $0$. By \autoref{genlevycontinuity}, $X_n$ can not converge to a real-valued random variable. Exercise: $X_n \xrightarrow{(d)} \overline{X}$, where $\bP[\overline{X} = \infty] = \frac{1}{2} = \bP[\overline{X} = -\infty]$. Similar examples are $\mu_n \coloneqq \delta_n$ and $\mu_n \coloneqq \frac{1}{2} \delta_n + \frac{1}{2} \delta_{-n}$. \end{example} \begin{example} Suppose that $X_1, X_2,\ldots$ are i.d.d.~with $\bE[X_1] = 0$. Let $\sigma^2 \coloneqq \Var(X_i)$. Then the distribution of $\frac{S_n}{\sigma \sqrt{n}}$ is tight: \begin{IEEEeqnarray*}{rCl} \bE\left[ \left( \frac{S_n}{\sqrt{n} }^2 \right)^2 \right] &=& \frac{1}{n} \bE[ (X_1+ \ldots + X_n)^2]\\ &=& \sigma^2 \end{IEEEeqnarray*} For $a > 0$, by Chebyshev's inequality, % TODO we have \[ \bP\left[ \left| \frac{S_n}{\sqrt{n}} \right| > a \right] \leq \frac{\sigma^2}{a^2} \xrightarrow{a \to \infty} 0. \] verifying \autoref{genlevycontinuity}. \end{example} \begin{example} Suppose $C$ is a random variable which is Cauchy distributed, i.e.~$C$ has probability distribution $f_C(x) = \frac{1}{\pi} \frac{1}{1 + x^2}$. We know that $\bE[|C|] = \infty$. We have $\phi_C(t) = \bE[e^{\i t C}] = e^{-|t|}$. Suppose $C_1, C_2, \ldots, C_n$ are i.i.d.~Cauchy distributed and let $S_n \coloneqq C_1 + \ldots + C_n$. Exercise: $\phi_{S_n}(t) = e^{-|t|} = \phi_{C_1}(t)$, thus $S_n \sim C$. \end{example}