|
|
|
@ -96,7 +96,7 @@
|
|
|
|
|
\end{IEEEeqnarray*}
|
|
|
|
|
|
|
|
|
|
As for an open $U$, $f_Y$ is an embedding.
|
|
|
|
|
Since $X \times \R^{\N}$
|
|
|
|
|
Since $X \times \R^{\N}$
|
|
|
|
|
is completely metrizable,
|
|
|
|
|
so is the closed set $f_Y(Y) \subseteq X \times \R^\N$.
|
|
|
|
|
|
|
|
|
@ -122,7 +122,7 @@
|
|
|
|
|
$U_1$ (open in $Y)$ and $U_2$ (open in $X$ ) of $x$,
|
|
|
|
|
such that $\diam_{d_Y}(U) < \frac{1}{n}$
|
|
|
|
|
and $U_2 \cap Y = U_1$.
|
|
|
|
|
Additionally choose $x \in U_3$ open in $X$
|
|
|
|
|
Additionally choose $x \in U_3$ open in $X$
|
|
|
|
|
with $\diam_{d}(U_3) < \frac{1}{n}$.
|
|
|
|
|
Then consider $U_2 \cap U_3 \subseteq V_n$.
|
|
|
|
|
Hence $Y \subseteq \bigcap_{n \in \N} V_n$.
|
|
|
|
@ -130,16 +130,20 @@
|
|
|
|
|
Now let $x \in \bigcap_{n \in \N} V_n$.
|
|
|
|
|
For each $n$ pick $x \in U_n \subseteq X$ open
|
|
|
|
|
satisfying (i), (ii), (iii).
|
|
|
|
|
W.l.o.g. the $U_n$ are decreasing.
|
|
|
|
|
From (i) and (ii) it follows that $x \in \overline{Y}$,
|
|
|
|
|
since we can consider a sequence of points $y_n \in U_n \cap Y$
|
|
|
|
|
and get $y_n \xrightarrow{d} x$.
|
|
|
|
|
On the other hand $\diam_{d_Y}(U_n \cap Y) \le \frac{1}{n}$,
|
|
|
|
|
so the $y_n$ form a Cauchy sequence with respect to $d_Y$,
|
|
|
|
|
since $\diam(U_n \cap Y) \xrightarrow{d_Y} 0$,
|
|
|
|
|
hence $\diam(\overline{U_n \cap Y}) \xrightarrow{d_Y} 0$.
|
|
|
|
|
$y_n$ converges to the unique point in $\bigcap_{n} \overline{U_n \cap Y}$.
|
|
|
|
|
Since the topologies agree, this point is $x$.
|
|
|
|
|
For all $n$ we have that $U_n' \coloneqq U_1 \cap \ldots \cap U_n$
|
|
|
|
|
is an open set containing $x$,
|
|
|
|
|
hence $U_n' \cap Y \neq \emptyset$.
|
|
|
|
|
Thus we may assume that the $U_i$ form a decreasing sequence.
|
|
|
|
|
We have that $\diam_{d_Y}(U_n \cap Y) \le \frac{1}{n}$.
|
|
|
|
|
If follows that the $y_n$ form a Cauchy sequence with respect to $d_Y$,
|
|
|
|
|
since $\diam(U_n \cap Y) \xrightarrow{d_Y} 0$
|
|
|
|
|
and thus $\diam(\overline{U_n \cap Y}) \xrightarrow{d_Y} 0$.
|
|
|
|
|
The sequence $y_n$ converges to the unique point in
|
|
|
|
|
$\bigcap_{n} \overline{U_n \cap Y}$.
|
|
|
|
|
Since the topologies agree, this point is $x$.
|
|
|
|
|
\end{refproof}
|
|
|
|
|
\end{refproof}
|
|
|
|
|
|
|
|
|
|