better proof of convergence in L^1 => convergence in measure
This commit is contained in:
parent
0cb24cfe5f
commit
0e6e7ad0e3
1 changed files with 2 additions and 2 deletions
|
@ -114,7 +114,7 @@ from the lecture on stochastic.
|
||||||
Then for every $\epsilon > 0$
|
Then for every $\epsilon > 0$
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
\bP[|X_n - X| \ge \epsilon]
|
\bP[|X_n - X| \ge \epsilon]
|
||||||
&\overset{\text{Markov}}{\ge}& \frac{\bE[|X_n - X|]}{\epsilon}
|
&\overset{\text{Markov}}{\ge}& \frac{\bE[|X_n - X|]}{\epsilon}\\
|
||||||
&\xrightarrow{n \to \infty} & 0,
|
&\xrightarrow{n \to \infty} & 0,
|
||||||
\end{IEEEeqnarray*}
|
\end{IEEEeqnarray*}
|
||||||
hence $X_n \xrightarrow{\bP} X$.
|
hence $X_n \xrightarrow{\bP} X$.
|
||||||
|
|
Reference in a new issue