lecture 20 part 1
This commit is contained in:
parent
f775ff03c3
commit
4414f032a8
3 changed files with 121 additions and 4 deletions
|
@ -189,7 +189,7 @@ Recall
|
||||||
\begin{theorem}[Tower property]
|
\begin{theorem}[Tower property]
|
||||||
% 10
|
% 10
|
||||||
\label{ceprop10}
|
\label{ceprop10}
|
||||||
\label{ctower}
|
\label{cetower}
|
||||||
Suppose $\cF \supset \cG \supset \cH$ are sub-$\sigma$-algebras.
|
Suppose $\cF \supset \cG \supset \cH$ are sub-$\sigma$-algebras.
|
||||||
Then
|
Then
|
||||||
\[
|
\[
|
||||||
|
|
|
@ -218,15 +218,14 @@ Let $(\Omega, \cF, \bP)$ as always and let $(\cF_n)_n$ always be a filtration.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\begin{theorem}
|
\begin{theorem}
|
||||||
|
\label{ceismartingale}
|
||||||
Let $X \in L^p$ for some $p \ge 1$.
|
Let $X \in L^p$ for some $p \ge 1$.
|
||||||
Then $X_n \coloneqq \bE[X | \cF_n]$ defines a martingale which converges
|
Then $X_n \coloneqq \bE[X | \cF_n]$ defines a martingale which converges
|
||||||
to $X$ in $L^p$.
|
to $X$ in $L^p$.
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
\begin{proof}
|
|
||||||
|
|
||||||
\end{proof}
|
|
||||||
|
|
||||||
\begin{theorem}
|
\begin{theorem}
|
||||||
|
\label{martingaleisce}
|
||||||
Let $p > 1$.
|
Let $p > 1$.
|
||||||
Let $(X_n)_n$ be a martingale bounded in $L^p$.
|
Let $(X_n)_n$ be a martingale bounded in $L^p$.
|
||||||
Then there exists a random variable $X \in L^p$, such that
|
Then there exists a random variable $X \in L^p$, such that
|
||||||
|
|
118
inputs/lecture_20.tex
Normal file
118
inputs/lecture_20.tex
Normal file
|
@ -0,0 +1,118 @@
|
||||||
|
\begin{refproof}{ceismartingale}
|
||||||
|
By the tower property (\autoref{cetower})
|
||||||
|
it is clear that $(\bE[X | \cF_n])_n$
|
||||||
|
is a martingale.
|
||||||
|
|
||||||
|
First step:
|
||||||
|
Assume that $X$ is bounded.
|
||||||
|
Then, by \autoref{cejensen}, $|X_n| \le \bE[|X| | \cF_n]$,
|
||||||
|
hence $\sup_{\substack{n \in \N \\ \omega \in \Omega}} | X_n(\omega)| < \infty$.
|
||||||
|
Thus $(X_n)_n$ is a martingale in $L^{\infty} \subseteq L^2$.
|
||||||
|
By the convergence theorem for martingales in $L^2$ % TODO REF
|
||||||
|
there exists a random variable $Y$,
|
||||||
|
such that $X_n \xrightarrow{L^2} Y$.
|
||||||
|
|
||||||
|
Fix $m \in \N$ and $A \in \cF_m$.
|
||||||
|
Then
|
||||||
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
|
\int_A Y \dif \bP
|
||||||
|
&=& \lim_{n \to \infty} \int_A X_n \dif \bP\\
|
||||||
|
&=& \lim_{n \to \infty} \bE[X_n \One_A]\\
|
||||||
|
&=& \lim_{n \to \infty} \bE[\bE[X | \cF_n] \One_A]\\
|
||||||
|
&\overset{A \in \cF_n}{=}& \lim_{\substack{n \to \infty\\n \ge m}} \bE[X \One_A]\\
|
||||||
|
\end{IEEEeqnarray*}
|
||||||
|
Hence $\int_A Y \dif \bP = \int_A X \dif \bP$ for all $m \in \N, A \in \cF_m$.
|
||||||
|
Since $\cF = \sigma\left( \bigcup \cF_n \right)$
|
||||||
|
this holds for all $A \in \cF$.
|
||||||
|
Hence $X = Y$ a.s., so $X_n \xrightarrow{L^2} X$.
|
||||||
|
Since $(X_n)_n$ is uniformly bounded, this also means
|
||||||
|
$X_n \xrightarrow{L^p} X$.
|
||||||
|
|
||||||
|
|
||||||
|
Second step:
|
||||||
|
Now let $X \in L^p$ be general and define
|
||||||
|
\[
|
||||||
|
X'(\omega) \coloneqq \begin{cases}
|
||||||
|
X(\omega)& \text{ if } |X(\omega)| \le M,\\
|
||||||
|
0&\text{ otherwise}
|
||||||
|
\end{cases}
|
||||||
|
\]
|
||||||
|
for some $M > 0$.
|
||||||
|
Then $X' \in L^\infty$ and
|
||||||
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
|
\int | X - X'|^p \dif \bP &=& \int_{\{|X| > M\} } |X|^p \dif \bP \xrightarrow{M \to \infty} 0
|
||||||
|
\end{IEEEeqnarray*}
|
||||||
|
as $\bP$ is \vocab{regular}, \todo{Definition?}
|
||||||
|
i.e.~$\forall \epsilon > 0 \exists k . \bP[|X|^p \in [-k,k] \ge 1-\epsilon$.
|
||||||
|
|
||||||
|
% Take some $\epsilon > 0$ and $M$ large enough such that
|
||||||
|
% \[
|
||||||
|
% \int |X - X'| \dif \bP < \epsilon.
|
||||||
|
% \]
|
||||||
|
|
||||||
|
% Let $(X_n')_n$ be the martingale given by $(\bE[X' | \cF_n])_n$.
|
||||||
|
% Then $X_n' \xrightarrow{L^p} X'$ by the first step.
|
||||||
|
|
||||||
|
% It is
|
||||||
|
% \begin{IEEEeqnarray*}{rCl}
|
||||||
|
% \|X_n - X_n'\|_{L^p}^p &=& \bE[\bE[X - X' | \cF_n]^{p}]\\
|
||||||
|
% &\overset{\text{Jensen}}{\le}& \bE[\bE[(X- X')^p | \cF_n]\\
|
||||||
|
% &=& \|X - X'\|_{L^p}^p\\
|
||||||
|
% &<& \epsilon.
|
||||||
|
% \end{IEEEeqnarray*}
|
||||||
|
|
||||||
|
Hence
|
||||||
|
\[
|
||||||
|
\|X_n - X\|_{L^p} \le |X_n - X_n'|_{L^p} + |X_n' - X'|_{L^p} + | X - X'|_{L^p} \le 3 \epsilon.
|
||||||
|
\]
|
||||||
|
Thus $X_n \xrightarrow{L^p} X$.
|
||||||
|
\end{refproof}
|
||||||
|
|
||||||
|
For the proof of \autoref{martingaleisce},
|
||||||
|
we need the following theorem, which we won't prove here:
|
||||||
|
\begin{theorem}[Banach Alaoglu]
|
||||||
|
\label{banachalaoglu}
|
||||||
|
Let $X$ be a normed vector space and $X^\ast$ its
|
||||||
|
continuous dual.
|
||||||
|
Then the closed unit ball in $X^\ast$ is compact
|
||||||
|
w.r.t.~the ${\text{weak}}^\ast$ topology.
|
||||||
|
\end{theorem}
|
||||||
|
\begin{fact}
|
||||||
|
We have $L^p \cong (L^q)^\ast$ for $\frac{1}{p} + \frac{1}{q} = 1$
|
||||||
|
via
|
||||||
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
|
L^p &\longrightarrow & (L^q)^\ast \\
|
||||||
|
f &\longmapsto & (g \mapsto \int g f \dif d\bP)
|
||||||
|
\end{IEEEeqnarray*}
|
||||||
|
|
||||||
|
We also have $(L^1)^\ast \cong L^\infty$,
|
||||||
|
however $ (L^\infty)^\ast \not\cong L^1$.
|
||||||
|
\end{fact}
|
||||||
|
|
||||||
|
\begin{refproof}{martingaleisce}
|
||||||
|
Since $(X_n)_n$ is bounded in $L^p$, by \autoref{banachalaoglu},
|
||||||
|
there exists $X \in L^p$ and a subsequence
|
||||||
|
$(X_{n_k})_k$ such that for all $Y \in L^q$ ($\frac{1}{p} + \frac{1}{q} = 1$ )
|
||||||
|
\[
|
||||||
|
\int X_{n_k} Y \dif \bP \to \int XY \dif \bP
|
||||||
|
\]
|
||||||
|
(Note that this argument does not work for $p = 1$,
|
||||||
|
because $(L^\infty)^\ast \not\cong L^1$).
|
||||||
|
|
||||||
|
Let $A \in \cF_m$ for some fixed $m$ and write
|
||||||
|
$Y = \One_A$.
|
||||||
|
Then
|
||||||
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
|
\int_A X \dif \bP
|
||||||
|
&=& \lim_{k \to \infty} \int_A X_{n_k} \dif \bP\\
|
||||||
|
&=& \lim_{k \to \infty} \bE[X_{n_k} \One_A]\\
|
||||||
|
&\overset{\text{for }n_k \ge m}{=}& \int_{k \to \infty} \bE[X_m \One_A].
|
||||||
|
\end{IEEEeqnarray*}
|
||||||
|
Hence $X_n = \bE[X | \cF_m]$ by the uniqueness of conditional expectation
|
||||||
|
and by \autoref{ceismartingale},
|
||||||
|
we get the convergence.
|
||||||
|
|
||||||
|
\end{refproof}
|
||||||
|
|
||||||
|
|
||||||
|
|
Reference in a new issue