overfull hbox
This commit is contained in:
parent
369308a9f8
commit
9f698ddf03
1 changed files with 4 additions and 4 deletions
|
@ -63,9 +63,9 @@ In order to prove \autoref{thm2}, we need the following:
|
|||
|X_1(\omega) + X_2(\omega)| > \epsilon \},\\
|
||||
\ldots\\
|
||||
A_i &\coloneqq& \{\omega: |X_1(\omega)| \le \epsilon,
|
||||
|X_1(\omega) + X_2(\omega)| \le \epsilon, \ldots,
|
||||
|X_1(\omega) + \ldots + X_{i-1}(\omega)| \le \epsilon,
|
||||
|X_1(\omega) + \ldots + X_i(\omega)| > \epsilon\}.
|
||||
|X_1(\omega) + X_2(\omega)| \le \epsilon, \ldots, %
|
||||
|X_1(\omega) + \ldots + X_{i-1}(\omega)| \le \epsilon,\\
|
||||
&& ~ ~|X_1(\omega) + \ldots + X_i(\omega)| > \epsilon\}.
|
||||
\end{IEEEeqnarray*}
|
||||
It is clear, that the $A_i$ are disjoint.
|
||||
We are interested in $\bigcup_{1 \le i \le n} A_i$.
|
||||
|
|
Reference in a new issue