added definition of conditional probability

This commit is contained in:
Josia Pietsch 2023-06-29 20:39:53 +02:00
parent eeb3208de4
commit c39ae924fe
Signed by untrusted user who does not match committer: jrpie
GPG key ID: E70B571D66986A2D
2 changed files with 27 additions and 40 deletions

View file

@ -78,6 +78,15 @@ We now want to generalize this to arbitrary random variables.
is a constant random variable. is a constant random variable.
\end{remark} \end{remark}
\begin{definition}[Conditional probability]
Let $A \subseteq \Omega$ be an event and $\cG \subseteq \cF$
a sub-$\sigma$-algebra.
We define the \vocab{conditional probability} of $A$ given $\cG$ by
\[
\bP[A | \cG] \coloneqq \bE[\One_A | \cG].
\]
\end{definition}
\paragraph{Plan} \paragraph{Plan}
We will give two different proves of \autoref{conditionalexpectation}. We will give two different proves of \autoref{conditionalexpectation}.
The first one will use orthogonal projections. The first one will use orthogonal projections.

View file

@ -1,5 +1,4 @@
\lecture{21}{2023-06-29}{} \lecture{21}{2023-06-29}{}
% TODO: replace bf
This is the last lecture relevant for the exam. This is the last lecture relevant for the exam.
(Apart from lecture 22 which will be a repetion). (Apart from lecture 22 which will be a repetion).
@ -12,18 +11,18 @@ This is the last lecture relevant for the exam.
\begin{notation} \begin{notation}
Let $E$ be a complete, separable metric space (e.g.~$E = \R$). Let $E$ be a complete, separable metric space (e.g.~$E = \R$).
Suppose that for all $x \in E$ we have a probability measure Suppose that for all $x \in E$ we have a probability measure
$\bfP(x, \dif y)$ on $E$. $\mathbf{P}(x, \dif y)$ on $E$.
% i.e. $\mu(A) \coloneqq \int_A \bP(x, \dif y)$ is a probability measure. % i.e. $\mu(A) \coloneqq \int_A \bP(x, \dif y)$ is a probability measure.
Such a probability measure is a called Such a probability measure is a called
a \vocab{transition probability measure}. a \vocab{transition probability measure}.
\end{notation} \end{notation}
\begin{examle} \begin{example}
$E =\R$, $E =\R$,
\[\bfP(x, \dif y) = \frac{1}{\sqrt{2 \pi} } e^{- \frac{(x-y)^2}{2}} \dif y\] \[\mathbf{P}(x, \dif y) = \frac{1}{\sqrt{2 \pi} } e^{- \frac{(x-y)^2}{2}} \dif y\]
is a transition probability measure. is a transition probability measure.
\end{examle} \end{example}
\begin{example}[Simple random walk as a transition probability measure] \begin{example}[Simple random walk as a transition probability measure]
$E = \Z$, $\bfP(x, \dif y)$ $E = \Z$, $\mathbf{P}(x, \dif y)$
assigns mass $\frac{1}{2}$ to $y = x+1$ and $y = x -1$. assigns mass $\frac{1}{2}$ to $y = x+1$ and $y = x -1$.
\end{example} \end{example}
@ -32,26 +31,26 @@ This is the last lecture relevant for the exam.
$x \in E$ $x \in E$
define define
\[ \[
(\bfP f)(x) \coloneqq \int_E f(y) \bfP(x, \dif y). (\mathbf{P} f)(x) \coloneqq \int_E f(y) \mathbf{P}(x, \dif y).
\] \]
This $\bfP$ is called a \vocab{transition operator}. This $\mathbf{P}$ is called a \vocab{transition operator}.
\end{definition} \end{definition}
\begin{fact} \begin{fact}
If $f \ge 0$, then $(\bfP f)(\cdot ) \ge 0$. If $f \ge 0$, then $(\mathbf{P} f)(\cdot ) \ge 0$.
If $f \equiv 1$, we have $(\bfP f) \equiv 1$. If $f \equiv 1$, we have $(\mathbf{P} f) \equiv 1$.
\end{fact} \end{fact}
\begin{notation} \begin{notation}
Let $\bfI$ denote the \vocab{identity operator}, Let $\mathbf{I}$ denote the \vocab{identity operator},
i.e. i.e.
\[ \[
(\bfI f)(x) = f(x) (\mathbf{I} f)(x) = f(x)
\] \]
for all $f$. for all $f$.
Then for a transition operator $\bfP$ we write Then for a transition operator $\mathbf{P}$ we write
\[ \[
\bfL \coloneqq \bfI - \bfP. \mathbf{L} \coloneqq \mathbf{I} - \mathbf{P}.
\] \]
\end{notation} \end{notation}
@ -71,16 +70,16 @@ is the unique solution to this problem.
Let $(\Omega, \cF, \{\cF_n\}_n, \bP_x)$ Let $(\Omega, \cF, \{\cF_n\}_n, \bP_x)$
be a filtered probability space, where for every $x \in \R$, be a filtered probability space, where for every $x \in \R$,
$\bP_x$ is a probability measure. $\bP_x$ is a probability measure.
Let $\bE_x$ denote expectation with respect to $\bfP(x, \cdot )$. Let $\bE_x$ denote expectation with respect to $\mathbf{P}(x, \cdot )$.
Then $(X_n)_{n \ge 0}$ is a \vocab{Markov chain} starting at $x \in \R$ Then $(X_n)_{n \ge 0}$ is a \vocab{Markov chain} starting at $x \in \R$
with \vocab[Markov chain!Transition probability]{transition probability} with \vocab[Markov chain!Transition probability]{transition probability}
$\bfP(x, \cdot )$ if $\mathbf{P}(x, \cdot )$ if
\begin{enumerate}[(i)] \begin{enumerate}[(i)]
\item $\bP_x[X_0 = x] = 1$, \item $\bP_x[X_0 = x] = 1$,
\item for all bounded, measurable $f: \R \to \R$, \item for all bounded, measurable $f: \R \to \R$,
\[\bE_x[f(X_{n+1}) | \cF_n] \overset{\text{a.s.}}{=}% \[\bE_x[f(X_{n+1}) | \cF_n] \overset{\text{a.s.}}{=}%
\bE_{x}[f(X_{n+1}) | X_n] = % \bE_{x}[f(X_{n+1}) | X_n] = %
\int f(y) \bfP(X_n, \dif y).\] \int f(y) \mathbf{P}(X_n, \dif y).\]
\end{enumerate} \end{enumerate}
(Recall $\cF_n = \sigma(X_1,\ldots, X_n)$.) (Recall $\cF_n = \sigma(X_1,\ldots, X_n)$.)
\end{definition} \end{definition}
@ -92,12 +91,6 @@ is the unique solution to this problem.
\] \]
\end{example} \end{example}
\begin{definition}[Conditional probability]
\[
\bP[A | \cG] \coloneqq \bE[\One_A | \cG].
\]
\end{definition}
\begin{example} \begin{example}
Let $\xi_i$ be i.i.d.~with$\bP[\xi_i = 1] = \bP[\xi_i = -1] = \frac{1}{2}$ Let $\xi_i$ be i.i.d.~with$\bP[\xi_i = 1] = \bP[\xi_i = -1] = \frac{1}{2}$
and define $X_n \coloneqq \sum_{i=1}^{n} \xi_i$. and define $X_n \coloneqq \sum_{i=1}^{n} \xi_i$.
@ -105,14 +98,8 @@ is the unique solution to this problem.
Intuitively, conditioned on $X_n$, $X_{n+1}$ should Intuitively, conditioned on $X_n$, $X_{n+1}$ should
be independent of $\sigma(X_1,\ldots, X_{n-1})$. be independent of $\sigma(X_1,\ldots, X_{n-1})$.
For a set $B$, we have
\[
\bP_0[X_{n+1} \in B| \sigma(X_1,\ldots, X_n)]
= \bE[\One_{X_n + \xi_{n+1} \in B} | \sigma(X_1,\ldots, X_n)]
= \bE[\One_{X_n + \xi_{n+1} \in B} | \sigma(X_n)].
\]
\begin{claim} \begin{claim}
For a set $B$, we have
$\bE[\One_{X_{n+1} \in B} | \sigma(X_1,\ldots, X_n)] = \bE[\One_{X_{n+1} \in B} | \sigma(X_n)]$. $\bE[\One_{X_{n+1} \in B} | \sigma(X_1,\ldots, X_n)] = \bE[\One_{X_{n+1} \in B} | \sigma(X_n)]$.
\end{claim} \end{claim}
\begin{subproof} \begin{subproof}
@ -120,16 +107,7 @@ is the unique solution to this problem.
\end{subproof} \end{subproof}
\end{example} \end{example}
{ \large\color{red}
%TODO
{ \huge\color{red}
New information after this point is not relevant for the exam. New information after this point is not relevant for the exam.
} }
Stopping times and optional stopping are very relevant for the exam, Stopping times and optional stopping are very relevant for the exam,